Development of software for the computation of the properties of
electrostatic electro-optical devices via both the direct ray tracing
and paraxial approximation techniques.

MPhys Final Year Project Dissertation by Andrew Jackson

Abstract: This project concerns the development of software designed
to simulate electro-optical devices; the potential being calculated via the
finite element method, and the optical behaviour determined by paraxial
and direct ray racing. The direct ray tracing technique, previously only
used for finite difference grids, has been developed by using new
interpolation techniques (to cope with the variability in mesh point
distribution inherent in the finite element technique), and aso by testing
various different integration algorithms under these conditions. The
new software has been found to be act as a useful tool for visualisation
of lens behaviour, and has been found to give reasonable quantitative
results for the predicted lens properties in comparison to the paraxial
approximation and to the results published in the literature for the
standardised two-tube electron lens.

1. Introduction

Charged particle optics forms an important part of modern physical research, and the simulation of
such devices forms an important part of their development. The computational techniques used in the
software written to assist the design process can be broken down into two parts. Firstly, the
determination of the electric and/or magnetic fields inside the device (via the boundary element®!,
finite difference***® or finite element!*®° methods), and secondly the simulation of the trgjectories of
charged particles through those fields (via the paraxial approximation*>9 or by direct ray tracing*34).
While the existing software is capable of producing reliable and accurate data in most cases, it is
generaly difficult to use and restrictive in the kinds of behaviour it can ssmulate. The difficulty for the
user arises from the fact that the software usually requires a grid or mesh in order to find the electric
and/or magnetic fields, and that this mesh must be completely defined by the user (as opposed to
implementing any form of automatic mesh generation). The restriction on the kind of behaviour to be
simulated is a consequence of the dependance of most of the software on the paraxia approximation,
which while accurate for particle trajectories near the optical axis, cannot simulate the particle motion
near the boundaries of the device.

This project concerned the development of a user-friendly piece of software designed to alow the finite
element solution of the electric field of any rotationally symmetric electrostatic electro-optical device
(assisted by semi-automatic mesh generation), and the simulation of the electron trajectories inside the

device both under the paraxial approximation and by direct ray tracing. Before this project began a
significant amount of code had already been written, but while the electric field solution and paraxial
ray tracing parts of the code were thought to be working reasonably well, the code designed to carry out
the direct ray tracing was working somewhat inaccurately, leading to the prediction of clearly non-
physical behaviour. Thus, the aim of this project was primarily to re-write the direct ray tracing code to
give more realistic behaviour and more accurate results, and also to check the electric field and paraxial
ray solutions produced by the original code. In order to ascertain the accuracy of the code, results from
the different techniques can be compared with the published results of others, for example the predicted
potential and lensing properties of a standard configuration two-tube electron lens®>, Once the direct
ray tracing results have been compared with those of the paraxial approximation and the theoretical and
experimental results of others, then the validity of this implementation of the direct ray technique can
be determined, it’s weaknesses noted and possibilities for further development can be proposed.

2. Theory
2.1 Physcial Principles
The software under development concerns only electrostatic devices, and so the field problem reduces
to the solution of the Laplace equation for the electrostatic potential :

/=0 @
This smplification, coupled with the rotational symmetry of the devices we wish to investigate, means
that the software needs only to consider the axial plane in order to completely describe the behaviour of
the system. In this way the problem becomes the determination the two-dimensional potentia V(r,z),
such that:

d2V(r,2) (N dV(r2) _
dr? rdr dz?

2

0

Which is the expanded form of the Laplace equation in cylindrical polar coordinates for the axia plane.
The potentia is thus defined by the boundary conditions of the system, in other words, by the charged
plates which make up the electrostatic electro-optical device being smulated. Once the potential has
been found, then the electric field is defined by the gradient of the potential:

E=-V ©)
Which for this two-dimensional problem is equivalent to:
__dv __dv 4
Ef dr EZ dz

Direct ray tracing can now be carried out by calculating the trgectories of electrons as they move
through the device, their motion being governed by the Lorentz force:

d oy = (5
a(mv) =eE(r)

Where the magnetic field component has been neglected. For thistwo dimensional problem, we find:
d _ d _ (6)
a(mvr) =eE(r,2) a(mvz) =eE(r,2)

Thus the high accuracy integration of the Newtonian equations of motion of an electron being acted on

by the Lorentz force, with a range of initial conditions (position and velocity), can be used to

investigate the properties of the electro-optical device.

It should be noted that this formulation of the problem is not complete and does place some restrictions
on the kinds of behaviour being smulated. Firstly, the behaviour of a beam of electrons is calculated
by the smulation of single electron trajectories through the electrostatic field, and so this approach
cannot take the space charge effect into account. Fortunately, this effect is only significant for
relatively high charge densities, and electron beams of sufficient concentration only occur in some
electron guns. Secondly, the equations of motion are classical, and so relativistic effects are not taken
into account. However, these effects only become noticable for beam energies greater than 1keV! prol
and so we only consider devices which function at energies below thislevel.

2.2 The Paraxial Approximation

Much of the work on electron optical devices makes use of the concepts and terminology of ray optics,
as these concepts provide a concise way of describing the behaviour of agiven device. The basis of ray
optics theory is the paraxial approximation, and added on to this is the theory of aberrations which
accounts for the deviations from first order (paraxial) behaviour.

The paraxia approximation!**” assumes that the electrons remain close to the optical axis of the lens,
and this alows the variation of the field perpendicular to the optical axisto be simplified. By using this
simplification we find we only need to know the electric field along the optical axis to carry out our
calculations. However, when the electrons are not moving close to the axis, then the basic
approximation begins to fail and aberrations start to form. Although there are various types of
aberration, especially for non-rotationally symmetric devices, for our purposes the most important is
spherical aberration.

Spherical aberration occurs when a change in the angle at which the electron beam enters the lens
causes the focal point of the beam to move along the optical axis. Figure 1 compares the idealised
paraxial approximation behaviour with the behaviour of the more realistic case of spherical aberration
for a plane lens. From this diagram it can be seen that spherical aberration alters the effective focal
length of the lens, forming not a point focus, but a circle of least confusion (or spot). Thus the paraxial
approximation has to be modified in order that spherical aberration may be taken into account. This

(a) lens plane (b) lens plane
object image object image

paraxial focus

Figure 1: Focussing properties of a plane lens demonstrating (a) idealised paraxial behaviour and (b) spherical abberation, showing the
position of the circle of least confusion, or spot.

behaviour is best described in terms of an aberration coefficient such that:

Dr = MGCs¢® (7
Where M is the linear magnification, and Dr is the transverse displacement at the paraxial image plane
of aray which leaves the point object at an angle q to the axis!. The scaling factor Cs is known as the
third order aberration coefficient. However, when carrying out direct ray tracing, it is more convenient
to use the form:

= Zp - Cstan’a 8)
Where zs, is the paraxial focal length, and where z: is the focal point and a is the angle of the calcul ated
electron trajectory as it crosses the optical axis¥. The fifth order abberation term has been omitted as
thisrelatively small effect is negligible whilst this piece of software is under development. It should be
noted that the electron optical lenses considered here generally behave more like thick lenses than thin
lenses, and so the focal length and aberration coefficents will depend on whether the rays enter the lens
from the left or right hand side of the lens.

While spherical aberration is by far the most prominent, it should also be noted that two other
aberrations can become significant in some cases. The first is relativistic aberration, where the focal
point moves as a consequence of the relativistic mass of the particle, and the second is chromatic
aberration, where the fact that any charged particle beam will have some variation in the velocities of
each of the particles means that the focal point becomes blurred. Relativistic aberration is significant
only for devices using relatively high potentials, and as noted above, we can ignore these cases and still
produce useful results. Unfortunately, the same cannot generaly be said for chromatic aberration,
because for the focussing properties of any device using a small aperture chromatic aberration will
dominate over spherical aberration™?. However, the effect does not significantly affect the focal
properties of devices using weaker potentials, and so for the time being we ignore the chromatic
aberration in the direct ray calculation.

2.3 Examples of Electro-Optical Devices

The simplest electro-optical device is the two-tube electrostatic electron lens, and numerous examples
of the predicted properties of this standardised form of this device have been published in the past®511,
The device is composed of two cylindrical electrodes of identical diameter, with a small gap between
them (see figure 2). In order to ensure the device has a standard definition, the parameter for the gap,
g, and for the lengths of the two cylinders, L1 and L., are all expressed in terms of the lens diameter D.
The properties of the device can then tabulated for a range of g/D, and for a range of potentia
differences, V2/V1.

Figure 2: Schematic representation of a simple two-tube
electrostatic electron lens.

The work of Natali et a® provides an excellent example of the high accuracy computation of the
potential, and so can be used to check the finite element code, whereas the papers by Liu & Ximen®
and Read et al!™ provide tabulated values for the focal length and spherical abberation coefficients, and
so can be used to check the paraxial and direct ray tracing.

3. Method & Development
As mentioned in the introduction, a significant amount of code had already been written when this

project began. This meant that much time was spend simply getting used to the code, understanding
the way in which devices are describe and how to use and adapt the user interface. Also, as the main
aim of this project was to improve the direct ray tracing code, only a basic outline of the finite element
and paraxial approximation ray tracing code will be given here. However, the following breakdown of
the various techniques that have been incorporated into the code will follow the structure of the
program and also of it's development.

3.1 Method for the Finite Element Solution of the Electrostatic Potential

When we wish to simulate a device using this software, we must first define the physical space which
the device occupies so that it may be broken up into a finite element mesh, and then define the
potentials that lie aong the boundaries of that mesh. First we note that the symmetry of the problem
means that given the rotational axis at r=0, we only need define the problem for r>0, as V(-r,z) must be
equal to V(r,z). From this geometrical basis, the structure of the device is broken down to a set of
nodes, which when entered into the program can be joined up to form a set of (usually quadrilateral)

polygons covering the domain of the device. Then, an automatic mesh generation program is used to
break each polygon up into a set of triangular elements according to user specified information on how
fine the mesh should be, and on how the mesh within each polygon should be graded (ie whether the
mesh should be uniform of whether it should become finer towards one side or corner).

In order to solve this finite element problem, the potential must be specified along the boundaries of the
mesh. These boundaries fall into one of two catagories, Neumann and Dirichlet. The optical axis (r=0)
represents a Neumann boundary, a where the gradient of the potential across the boundary is known
(due to symmetry, the gradient must be zero). All the other boundaries are Dirichlet boundaries, where
the value of the potential is known. A set of electrodes, each of a given potential, is entered by the
user, along with any gaps (in which the program assumes the potential to be varying linearly with z).
This information, combined with the left and right hand end potentials, completely defines the problem.

The finite element solution then proceeds by the solution of a matrix problem (ie a set of linear
simultaneous equations defined by the mesh and it's boundaries). In order to make the solution of the
matrix problem more efficient, the mesh points are re-numbered so that the matrix becomes tri-diagonal
inform. For more details on the nature of the finite element method, see Kikuchi?.

Once the potential has been found, the optical properties can be calculated by tracing a set of electrons
thought the potential, from a point electron source with a user specified position, energy and angular
range. This calculation was carried out by the subroutine TRAJEC, and the development of the
program consisted of alterations and modifications to this part of the code (supplied in appendix B).

3.2Ray Tracing Via The Paraxial Approximation

This part of the code creates a cubic spline of the axial potential for interpolation purposes (subroutine
AXPOT), and then uses this potential V(z) to find for the paraxia trajectories by solving the
differential equation describing the first order properties of the device, as derived from the theory of
Hamiltonian optics (in AXPATHS). The exact form of this approach in not considered here (see refs.
[145912) " and it is sufficient simply to note that the paraxial approximation plots the calculated
trajectories on a plot of the lens, and reports the focal point position to the user, along with the third
order spherical and first order chromatic aberration coefficients (PARAXABBERS, ABBERS)

3.3 Direct Ray Tracing

While the finite difference and paraxial approximation code have undergone no development during
this project, the direct ray tracing code (controlled by the PATHS routine) has been altered many times,
with many different algorithms being tested. The direct ray tracing calculation breaks down into three
main tasks. The accurate interpolation of the finite element mesh, the differentiation of the potential to

find the electric field, and the integration of the equations of motion of the electron. The following
three sections addresses each of these tasks by explaining the initial state of the code, and then covering
the other techniques which have been implemented.

3.3.1 Interpolation of the potential mesh:

In order to solve the equations of motion for the electron in this electrostatic potential, it is necessary to
be able to calculate the potential at any point, V(z,r), in other words to find the value of the potential by
interpolation inside each mesh element. While this poses no problem in a finite difference calculation
(where the mesh points follow a simple geometrical form, eg cartesian, for which high accuracy
interpolation is well understood*34%), the finite element method can allow any arrangement of mesh
points, and so while it is more flexible in terms of the kinds of device geometry it can accurately
represent, it requires that the interpolation technique is equally as flexible. It should be noted that of all
the published work that has been examined, none have used direct ray tracing in combination with the
finite element approach, presumably because of the difficulties in creating an accurate interpolation
algorithm.

3.3.1.1 Nearest Neighbour Averaged Linear Interpolation:

This technique uses the routine FINDEL to find the reference number of the element at the current
point, and the uses FINDNN to find the reference numbers of the three neighbouring elements. The
geometrical centres of each of the neighbouring elements can then be determined, and the value of the
potential at the three elements centres calculated by linear interpolation of the values of the potential at
the three nodes of each element (using LINPOT). The way in which this is done refers back to the
roots of the finite element method (by expressing the geometrical centre of each element in terms of
areal coordinates), and is equivalent to fitting a plane to each of the elements nodes (in z,r,V space) and
then using this plane to find the value of V at the midpoint. The three sets of (z,r,V) coordinates for the
cell centres are then expressed as another plane, and this can then be used to find the electric field. The
main problem with this method is that it uses a very simple linear approximation over arelatively wide
physical range, and so can miss the finer details of the shape of the potential surface.

3.3.1.2 Linear Interpolation:

This approach is closely related to the nearest neighbour averaging algorithm above, but much
simplified. Instead of averaging the potential over the three nearest neighbour elements, it simply takes
the linear interpolation of the three nodes of the currently occupied element. This means that the
potential being used is exactly that which was calculated by the finite element method, and while it take
no account of the general form of the potentia in the region surrounding the current element, and so is
not a particularly accurate approach, it does have the advantage of simplicity, and of forming a reliable

base on which more complex techniques can be devel oped.

3.3.1.3 Localised Nth Order Spline:
This technique attempts to better describe the potential surface by fitting a non-linear splineit's form as
opposed to using a linear approximation. The technique is related to the Chebyshev agorithm (see
Press et a!?), except that the spline is fitted locally to the point at which we require to know the
potential (as opposed to a set of splines over the whole domain), and that it must work in two
dimensions. Each spline has the form:

y = amX” + ax™ + aax™ + ..+ aX + a 9)
And so clearly an nth order spline required n+1 coefficients (a) in order for it to be properly defined,
and so we need n+1 data points (x,yi) in order to form the n+1 linear simultaneous equations required
to find the set of coefficientsa). This straightforward concept is complicated by the two-dimensional
nature of the problem in that in order to fit anth order spline surface to the potential we need enough
sets of n+1 pointsto create at least two splines. For this problem two sets have been used, one parallel
to the z axis, and one parallel to the r axis (using these two perpendicular splines not only improves the
accuracy of the interpolated potential surface, but also assists the differentiation of the surface to find
the electric field). This concept isillustrated in figure 3 below:

Potential

Interpolated

Spatial coordinate

Figure 3: Schematic example of averaging two perpendicular cubic splines for the purpose of two
dimensional interpolation.

In order for this approach the work, the code must find the appropriate length scales to fit the splines
over, and this must take into account of the variation of element size in the positive and negativez and r
directions. This is achieved by finding the relative positions of the centres of the nearest neighbour
elements (using FINDNN and FINDELCENT), and then finding the overall z/r span of this set of
spatial vectors in both the positive and negative directions. These span lengths are then scaled
according to the order of the approximation so that enough different elements will be covered to supply
enough different information to make the approximation meaningful, although the best value for the
scaling parameter is by no means immediately apparent. The n+1 points are distributed over these z/r
ranges, and then LINPOT is then used to find the potential at these 2(n+1) points (note that this means
LINPOT now has to call FINDEL as the 2(n+1) point are not necessarily inside the current element).

This method also requires that no spline points lie outside the boundary of the finite element mesh,
where the potential is undefined, and so the code must also find the maximum spline in the positive and
negative z and r directions and make sure the interpolation splines fit within these maximum values
(MinSplin). The only exception to this is the case of interpolation near the rotational axis, where the
spline must be alowed to fall outside the mesh (ie into negative r values) by using the fact that V(-r,z)
isequal to V(r,z).

The computational solution proceeds as follows. The subroutine MeshSpline uses FINDEL to find the
element at the current point, then uses FINDNN to find it's nearest neighbours, and then uses
FINDELCENT to calculate the centres of these cells. This data is then used to construct the
characteristic cell dimensions in the positive and negative z and r directions (Zmax, Zmin & Rmax,
Rmin). These characteristic lengths are then modified such that they cover a sufficiently large spatial
range, using the expressions.

Zmin := nthsc x (n+1) x Zmin
Zmax := nthsc x (n+1) x Zmax
Rmin := nthsc x (n+1) x Rmin
Rmax := nthsc x (n+1) x Rmax

Where nthsc is the scaling parameter mentioned above. Once a set of spline lengths have been found,
the code calls MinSplin, which returns the largest alowed values of Zmax, Zmin, Rmax and Rmin as
defined by the boundary conditions for the current point. These two sets of values are then compared,
and the spline lengths are made to fit the boundaries of the device where necessary.

The process continues by breaking the spline lengths down into n+1 evenly spaced point (z1 - zw+1 and r1
- n+1), and using LINPOT to find the values of the potential at these points (ie Vi(z,r) and Vi(z,)).
These two sets of data are then passed to the routine nthapprox, which uses a fully-pivoting Gauss-
Jordan matrix routine (from Press et al?) to solve for the spline coefficients for each set of data. Once
the coefficients have been found, nthaeval can be used to evaluate the approximation to the potential
for any point z,r in the region of the spline.

3.3.1.4 Localised Nth Order Least-Squares Fit Polynomial:

This fourth technique is closely related to the localised spline calculation, and differs only on the fact
that instead of using n+1 points to find an nth order spline to approximate the potential surface, it uses
2n points and fits a least squares polynomial to potential data. As this technique uses more data from
the mesh to form the same order of interpolation over the same spatial area, the form of the polynomial
should more closely approximate the potential surface. The routine used to perform this approximation
is SVDFIT (from Press et al@) which replaces my own nthapprox routine, and has the advantage of

using single value decomposition as opposed to Gauss-Jordan elimination (which can cope better with
extreme cases such as near singular matricies).

In order to find out which of the above methods of interpolation performs the best, the code can be
made to produce a interpolated version of the axial potential, and then this can be compared with the
potential on each of the nodes along the axis. If the interpolation is working well, the form of the
interpolated potential curve should be smooth, and should agree with the potential from the finite
element calculation at each node. In thisway it should be possible to determine which approach works
the best, and in the case of the latter two to find the optimum values for the order of the interpolation
(n) and the scaling parameter (nthsc).

It should be noted here that during the development of the program, some of the most basic routines,
which existed before this project began, were found to be working incorrectly. Firstly, the routine to
identify the element whose area includes a given point r,z, FINDEL, was searching the element array
incorrectly, and somtimes assumed a point to be outside the finite element domain when this was not
the case. Also, the routine designed to find the nearest neighbour elements (FINDNN) was failing, and
returning invalid element reference numbers. Both these faults have bee corrected. Also, the optimum
element numbering for the finite element solution need not correspond the the spatial arrangement of
the cells, but FINDEL works more quickly when the reference numbers of the cells are arranged so that
they correspond to the spatial order, and so the code runs much faster if the elements have been sorted
according to their position. Before the project began, a very basic sorting was being used (taking tens
of seconds to sort the mesh data), and during the codes development this routine has been replaced by
QuickSort from Press et a3, with the consequence that the sorting process is now at least one order of
magnitude faster than before.

3.3.2 Calculation of the Electric Field:

Given the potential in it's interpolated form, we need to find the derivative of the potential at the current
point, in other words the electric field (E;, E:), in order to integrate the equations of motion of the
electron. Two different schemes were compared for this calculation.

3.3.2.1 Linear Surface Gradient:

This technique was applied to both the linear interpolation technique results, and is the origina routine
from the code before this project began. When called, the routine GRAD takes the plane formed by the
interpolation code and returns the gradient of the plane in the z and r directions as the values for the
electric field. The main drawback of this approach is that as the interpolation uses the same single
linear approximation for each element, then no matter where the electron lies in that element the

10

electric field will be found to be the same. In other words, this technique cannot take the general form
of the potential into account, and so it can be expected to perform badly when it comes to finding the
derivative of the potential.

3.3.2.2 Nth order polynomial derivative:
In the case of the two nth order polynomial interpolation routines, the derivative of the potential at the
current point can be calculated by direct differentiation of equation (9) such that:

dy/dx = nawix™ + (n-1) ax™ + (N-2) awaX™ + ...+ 2aX + & (10)
As the interpolation routine takes a broad physical range into account, this approach should form a
better approximation to the form of the potential and so form a much more accurate representation of
the electric field than the linear gradient approach.

The validity of these routines can be checked in a similar way to the interpolation. Instead of plotting
V as afunction of z, the two derivatives E; and E; can be plotted as a function of z and r respectively
for any arbitrary trgjectory through the device. Although there is no exact form of the electric field
with which we can compare these results, as there was with the interpolation check, we can still use
these plots to check that the calculated electric field is varying smoothly and consistently. Also, if the
results of the tests of the different interpolation are inconclusive as to which is better, then the more
challenging differentiation check can be used.

3.3.3 Integration of the equations of motion

Whilst the details of the different integration routines vary, the general structure of the integration does
not. Each is designed to solve a set of N first-order differential equations, and so in order to solve the
problem the equations of motion (6) are re-expressed to form a set of four coupled first order
differential equations:

dv;, = ek dz = V2 (12)
dt m dt

and
dv, = ek da = Ve (12)
dt m dt

The integration routine, when called from PATHS, calculates the change in velocity and position for
one time step, h, and the DERIVS routine supplies the values of the electric field and velocity at the
current position (using one of the sets of interpolation and differentiation routines outlined previoudly).
The new point of the trgjectory is then stored and plotted on the screen.

11

For this process to work at all, it is necessary to know what value of h would be reasonable for the
integration, and this cannot be set arbitrarily because the potential of the system (and so the velocities
involved) can differ greatly between devices. To get around this problem, PATHS looks at the
potentials on the plates and uses this to estimate the speed of an electron moving through the device
along the axis. Thisisthen used as the basis for the estimation of the required timestep. The different
integration algorithms that have been implemented are as follows:

3.3.3.1 Adaptive Runge-Kutta

This routine, taken from Press et a!?, takes the fourth order Runge-Kutta routine (see 3.3.3.3 below),
and modifies it's implementation such that the time step, h, can be altered during the course of the
integration. In thisway many small steps can be used to tiptoe through the quickly varying parts of the
potential, and a few much larger steps employed to cover the smoother areas, thus making the process
more time-efficient. However, this routine was suspected not to be working correctly, and so was
replaced with a somewhat simpler method.

3.3.3.2 Smple Euler Integration
This routine is extreme easy to implement, and represents the simplest possible method of integration,
where equations of the form:

dx/dt = f(x)
are solved using
Dx = Dt f(x)

expressed in the program as:

Xn+1 = Xn + h f(x)
While this routine is not particularly accurate (error ~ h?), and occasionally unstable, it has the
advantage of being ailmost impossible to implement wrongly. In this way, the possible failure of the
adaptive Runge-Kutta algorithm can be checked.

3.3.3.3 Runge-Kutta

The Runge-Kutta algorithm is based of the principle of taking set of Euler type steps, and then using
the information obtained to fit a Taylor expansion up to some higher order. The routine RK4 (from
Press et all? used here represents the form of this technique when four Euler steps are taken, leading to
a Taylor approximation with an error of the order of h*. While this technique represents a great
increase in accuracy over the Euler approach, a ssimple way to improve it is by using extrapolation.

12

3.3.3.4 Extrapolative Runge-Kutta
This technique, taken from Hawkes & Kasperl¥, increases the accuracy of the Runge-Kutta routine by
means of an extrapolation of the form:

X1 = XOna + Yis (X@na - xOha)
where xWn.; represents the results of a single Runge-Kutta step over an interval h, and where x@n.1
represents the results obtained by using two steps of interval "/>. The main draw back is that the Runge-
Kutta routine needs to evaluate the electric field four times, and so the extrapolating algorithm requires
16 evaluations per time step. This can lead to a rather slow integration process when, as in this case,
the value of the electric field requires quite a degree of computation. Because of this the structure of
the code was changed so that instead of constructing a new interpolation for the mesh every time the
DERVIS routine is called, the interpolation is only constructed for every time step. This makes the
assumption that the form of the potential does not change significantly over the distance covered in the
time interval h, and as thisis required to be true in order for the integration to work accurately anyway,
this assumption perfectly reasonable.

3.3.3.5 Hamming Predictor-Corrector

This multistep algorithm (also from Hawkes & Kasper, and similar to that used by Natali et a)
differs from the previous routines in that instead of using only the current point to predict the next point
via Euler type steps, the new point is calculated by forming an appropriate linear combination of the
preceeding ones. Since this can be done in different ways, it automatically provides an accuracy
control, Whereas al of the other routines tend to propagate and accumilate errors as the integration
proceeds. The Hamming algorithm breaks down into two parts, the predictor (which uses the previous
four positions to predict the next one), and the corredtor (which corrects the predicted position by using
information supplied by the DERIVS routine). The accuracy check comes from comparing the
predicted and corrected results, such that the time step is halved if the accuracy falls below some user
defined level (errs), and doubled if the accuracy is significantly better than errs (two hundred times
better in this particular case). While this changing time step should mean that the code works
efficiently and accuratly, the code does have the drawback that it is not self-starting, requiring four
Runge-Kutta steps to be carried out before it can be used, and aso for restarting the algorithm when the
time step is dtered (as the stored points correspond to the old time step). From Natai et at®, this
drawback should lead to an error of only 0.01%.

Clearly, the extrapolative Runge-Kutta will perform better than the Euler and basic Runge-Kutta
routines, and so the question that remains is whether the Adaptive Runge-Kutta, the Extrapolative
Runge-Kutta or the Hamming Predictor corrector is the most accurate. This can be ascertained firstly
be simply checking that the electron trajectories have a single, well defined focal point for rays near the

13

axis, and aso by checking that at higher angles the focal point follows the expected form due to
spherical aberration. As well as this, we know that the potential and particle form a energetically
closed system, and so if we add together the potential energy for the electron at it's current position and
it's kinetic energy, then we can check whether this figure is constant, as it should be. This technique
can also be used to investigate the quality of the interpolation and differentation algorithms.

3.4 Calculation of Lens Properties:
As the electron trajectories are calculated, part of the PATHS routine checks whether the last step has
caused the electron to cross the optical axis, in other words to see if the focal point has been calculated.
Using this condition the routine then stores the focal point (z;) and the slope of the ray (tan(a)) in an
array, which can then be used to calculate the paraxia focus (z,) and the third-order spherical
aberration coefficient (Cs) using equation 8. This is achieved by the FINELABBERS routine by using
the SVDFIT least-square algorithm to finding the coefficients of a polynomial of the form:

y = ax* + a
Where x corresponds to the slope tan(a), y corresponds to the direct ray focal point z, and & and &
correspond to the paraxial focus and the aberration coefficient respectively. When the coefficients have
been found they are printed to the screen, along with an estimate of the error in each figure (calculated
by SVDVAR, another routine from Press et al!@). Unlike the paraxial routine, the direct ray calculation
only returns the value of the spherical aberration when it is actually affecting the focal length, and the
quality of the fit depends on the number of trajectories that have been calcul ated.

14

4. Results & Discussion

4.1 Validation Of The Finite Element Potential

The axial potential of a standardised two-tube electrostatic electron lens was compared with the
published results of Natali et al®. As the published data consists of tabulated potential values (for one
half of the electron lens), the finite element mesh was defined such that the points on the axis for the
mesh match up with the tabulated values (Appendix A.1 shows the finite element mesh used). The
tabulated values are presented below, along with a graph of the axia potential from both tables, with
the present result plotted as points and the previous paper's potential plotted as aline (figure 4). Just by
visual comparison the two results clearly agree, and analysis of the tabulated data has shown that the
difference between the two calculations was only 0.02%. On the basis of this evidence, the finite
element potential calculation is seen to be working well.

z/D Electrostatic Potential oo o Nt
Present results Natali et al Finite Element Result o
0.00000000 050000000 050000000 e
0.02500000 0.46714915 0.46711500
0.05000000 0.43459568 0.43453200
0.07500000 0.40262572 0.40253800
0.10000000 0.37150388 0.37139900
0.12500000 0.34146465 0.34135100
0.15000000 0.31270599 0.31259200
0.17500000 0.28538560 0.28527900 01 |
0.20000000 0.25961956 0.25952800
0.22500000 0.23548332 0.23541300 0
0.25000000 0.21301910 0.21296900
0.30000000 0.17307084 0.17307900 0 0s 1 15 2 25
0.35000000 0.13948118 0.13956600 Figure 4: Comparison of the present results with
0.40000000 0.11168299 0.11185100 those of Natali et al®.
0.45000000 0.08895959 0.08921200
0.50000000 0.07055776 0.07089700
0.60000000 0.04412242 0.04443600
0.70000000 0.02741136 0.02767600
0.80000000 0.01697056 0.01717800
0.90000000 0.01048736 0.01064200
1.00000000 0.00647471 0.00658600
1.10000000 0.00399538 0.00407400
1.20000000 0.00246481 0.00251600
1.30000000 0.00152037 0.00155700
1.40000000 0.00093774 0.00096200
1.50000000 0.00057837 0.00059500
1.60000000 0.00035671 0.00036800
1.70000000 0.00022000 0.00022700
1.80000000 0.00013568 0.00014100
1.90000000 0.00008368 0.00008700
2.00000000 0.00005161 0.00005400
2.10000000 0.00003183 0.00003300
2.20000000 0.00001963 0.00002000
2.30000000 0.00001211 0.00001300
2.40000000 0.00000747 0.00000800
2.50000000 0.00000461 0.00000500

15

4.2 Analyis And Development Of The Direct Ray Tracing Approach

All the following results were taken for the same thin lens as that used by Liu & Ximen®™ (the form of
the finite mesh used to describe it is supplied in appendix A.2).

4.2.1 Interpolation Of The Axial Potential From The Finite Element Mesh

The first test carried out on the interpolation was to check that the interpolated axial potential agreed
with the values of the potential on the finite element nodes along the axis. Figure 5 compares the four
interpolation techniques against the node potential.

12 12

T T T
Nearest Neighbour Linear Interpolation Linear Interpolation
Nodal Potential ¢ Nodal Potential o

08 - -4 08 -

06

406

04 -

Hoa |

02 - 402

I I I I I
0 nns n1 n1s8 n? 0 0.05 0.1 0.15 0.2]

1.2 T T 1.2 T T T
Cubic Spline Interpolation Cubic Least-Squares Polynomial Interpolation
Nodal Potential o Nodal Potential o

1 1
08 - +4 08 |
06 - +4 06 |
0.4 0.4
02 402 -

0 . . . 0 . . .

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2]

Figure 5: Comparison of the axial potential for the four methods of interpolation with the nodal
potential from the finite element calculation.

Unfortunately, these results give no clear evidence of any one routine performing any better than any of
the others, all of them agreeing reasonably with the finite element node potentials. This being the case,
the differential of the potential must be examined in order to determine which between of the
techniques is the best.

16

4.2.2 Differentiation Of The Electrostatic Potential

Figure 6 presents the z component of the electric field for the two linear interpolation techniques, and
figures 7 and 8 compare the same quantity calculated by the spline and least-squares approaches
respectively. For these latter two, the left-hand plot corresponds to linear interpolation, the middle plot
to quadratic and the right-hand plot to cubic interpolation. For each of these a range of scaling factors
are compared (nthsc =1, 2, 3).

120 T T 140 T T T
NN Linear Linear element technique
100 | | 120 B
100 - B
80 - B
80 B
60 |- B
60 | B
40 - o
40 |- N
20 B
20 | b
0 ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘
0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12]
Figure 6: Plots of E; as calculated by the nearest neighbour and single element linear interpolation.

140 T T T T T T T 140 T T T T T T T 140 T
nthsc =1 nthsc =1 nthsc = 1
nthsc = 2 nthsc = 2 nthsc = 2
nthsc =3 —— nthsc =3 nthsc =3
120 - 4 120 4 120
100 - 4 100 4 100
80 ~ 80 -4 80 |
60 | 60 4 60 |
40 + 40 4 40 |
20 | 20 4 20 |
OD.OB 0.(;85 0.09 01)‘95 0‘ 1 01‘05 0. ‘11 0.115 0.12 00 08 0. (;85 0.09 0.(;95 O‘vl 0.1‘05 Ov‘ll 0.115 0.12 OD.OB 0.(;85 0.09 01)‘95 0‘ 1 01‘05 0. ‘11 0.115 0.12
Figure 7: Comparison of the spline interpolation routines for linear, quadratic and cubic splines left to right. Each diagram compares
the results from using a scaling factor of 1, 2 and 3.

140 T T 140 T T 140 T T
nthsc = 1 nthsc = 1 nthsc = 1
nthsc =2 —— nthsc =2 nths¢c =2 ——
nthsc = 3 120 b nthsc =3 —— |
120 4 120 b
100
100 1 100
80
80 1 80
60
60 - 1 60 r
40 |
40 L 4 40 |
20 -
20 - 4 20 ¢ 0

0 n L L L L 0 n L L L L 20 L L L L L L L
0.08 0085 0.09 0.095 01 0105 011 0115 012 008 008 0.09 0.095 01 0105 011 0115 012 008 0085 0.09 0.095 01 0105 011 0115 0.12

Figure 8: Comparison of the least-squares polynomial interpolation routines for linear, quadratic and cubic splines left to right. Each
diagram compares the results from using a scaling factor of 1, 2 and 3.

17

Both of the linear interpolation techniques can clearly be seen to form a poor approximation to the
electric field, and closer inspection of the results in figures 7 and 8 (by checking which best conserves
the total energy of the potential and the electron) has shown that the least-squares cubic approximation
forms the smoothst interpolation, whilst also being least dependant on the scaling factor. This means
that the technique should be able to cope better with the different variations in any finite element mesh
it is applied to. The routine was refined by searching for the value for the scaling factor which
minimised the error in the total energy for a ray passing through the lens, and this investigation found
that the best value of the scaling factor for the cubic interpolation is nthsc = 1.75 (which correspond
energy being conserved with 0.01% accuracy.

4.2.3 Integration Of The Equations Of Motion

When the Adaptive Runge-Kutta routine was removed, and then replaced with the theoretically less
accurate Euler routine, there was an immediate improvement in the quality of the results. This apparent
paradox occurred because while the Adaptive Runge-Kutta works well with most smoothly varying
data, it appeared to be unable to cope with data that has a very small degree of variation. After
discovering this, the Euler alrogithm was replace with the fourth order Runge-Kutta routine, and then
with the extrapolative Runge-Kutta, with the accuracy of the results improving aong the way.
However, it was not immediately apparent whether the Hamming Predictor-Corrector or the
extrapolative Runge-Kutta was giving the best results, and this section deals with the differentiation
between the quality of these two routines.

The extrapolative Runge-Kutta routine was tested by calculating the error in the total energy for a
single ray passing through the lens at a fixed angle (1° to the optical axis, starting on the axis at the | eft-
hand side of the device) for arange of values for the time step. The time step was atered by taking the
estimated time step value and multiplying it by an constant less than or equal to 1.0. In the case of the
Hamming predictor corrector routine, the same calculation was carried out using the best time step
from the Runge-Kutta results as the initial time step and then setting the error parameter (errs) to a
range of values to see how it affected the results. The data from these tests is presented in the table
overleaf.

18

Runge-Kutta Hamming Precitor-Corrector

Time Step x | Energy Error Accuracy Factor | Energy Error
1.000 1.166e-02 1.0e-02 7.481e-05
0.550 4.735e-04 1.0e-03 7.460e-05
0.525 1.974e-04 1.0e-04 7.434e-05
0.500 7.439e-05 1.0e-05 7.439e-05
0.475 1.942e-04 1.0e-06 1.661e-03
0.450 1.339e-04 1.0e-07 1.401e-03
0.400 2.735e-04 1.0e-08 1.212e-03
0.300 2.570e-03 1.0e-09 8.180e-04
0.200 1.206e-03 1.0e-10 8.219e-04
0.100 9.000e-03 1.0e-11 8.138e-04
0.050 1.038e-03 1.0e-12 8.111e-04

The result for the extrapolative Runge-Kutta routine is as would be expected for any single step
algorithm. While decreasing the time step initially decreases the error in the results, for very small time
steps the accumulated errors begin to become significant, and so the accuracy of the integration
decreases. The balance between these two types of behaviour is therefore found to occur at a time step
factor value of 0.5, and so this value gives the best results for the Runge-Kutta integration. This figure
was then used to find the initial time-step for the Hamming routine.

The behaviour of the Hamming routine can be explained in terms of the accuracy factor (errs) as
follows. For the larger values of the accuracy factor (errs = 1.0e-2 - 1.0e-5), the initia time step is
sufficient to satisfy the error criterion, but as it is decreased furthur the routine has to change the time-
step in order to satisfy the same accuracy condition. Unfortunately, when this happens the Hamming
code has to be restarted with the extrapolative Runge-Kutta, and this causes errors to form in the results
(especidly if the time step is changing rapidly, in which case the Runge-Kutta accumulates errors as
before). However, in this region, the calculated error is approximately constant for the different values
of errs, which implies that while the Hamming code is less accurate than an extrapolative Runge-Kutta
routine with an optimised time step, it is more consistently accurate than the Runge-Kutta for a range of
accuracy conditions. This means that the Hamming code is more flexible and so more likely to work
well for different problems, where the optimum time step may differ from the value found here.

The only drawback is that while the Runge-Kutta is always reasonable quick (~ 20-30s per ray), the
Hamming code slows down as the accuracy criterion starts to work, and so when a device is being
simulated it is best to start with errs ~ 1.0e-4 (to get a rough estimate of lens behaviour) and then
change this to errs ~ 1.0e-9 when more accuracy is required. Although the accuracy factor can be set
higher than this, the code starts to run very slow indeed (~ 2-3 minutes per ray) and there is very little
increase in accuracy (due to the Runge-K utta/Hamming interface).

19

4.3 Example Ray Diagrams For The Different Techniques

The overal ray diagram results from various techniques are presented here for direct visua
comparison. Figure 9 shows the ray diagram for a simple two-tube electron lens as calculated by the
paraxial approximation, and figures 10 and 11 compare the results for the same lens as calculated by
the direct ray tracing code before this project began with the results the code now produces.

06 E

04 | f

-0.2 -

0.6 | .

-0.8 B

-1
0 2 4 6 8 10 12 14 16 18 2

Figure 9: Ray diagram for a simple two-tube electron lens as
calculated by the paraxial approximation.

0.01 0.01
0.008 - R
0.006 -
0.005 R
0.004
0.002 -
0 Ol Thwe— . .
-0.002 |-
-0.004 |- i
10.005 R
-0.006 -
-0.008 |- .
-0.01 1 1 1 1 1 1 | | | -0.01 1 1 1 1 1 1 1 L 1 1
0 002 004 006 008 01 012 014 016 018 0.2 0 002 004 006 0.08 01 012 014 016 018 0.2 0.22
Figure 10: Ray diagram for a simple two-tube electron lens as Figure 11: Ray diagram for a simple two-tube electron lens as
calculated by the direct ray tracing code before this project began. calculated by the new direct ray trading algorithm.

20

The non-physical behaviour of the old code has been eliminated from the direct ray tracing code to the
point that the ray diagrams now agree with the paraxial ray diagrams for low angle rays. Moreover, the
effect of spherical aberration is now clear, with the direct ray focus moving inward from the paraxial
focal point as the angle increases. The degree of agreement between the paraxial and direct ray tracing
will be examined further in the next section.

4.4 Comparison With Published Data For The Two-Tube Electron Lens

The table below gives the results from a series of simulations of the standardised two-tube electron lens
(with g/D = 0.1) for arange of voltage ratios. The paraxial focus and third order spherical aberration
coefficients from the direct ray calculation are compared with those from the paraxial approximation
code and the published results of Liu & Ximen®. The direct ray calculations were carried out using the
Hamming PC code (errs = 0.1e-6) and the mesh interpolation performed by the cubic least-squares
approximation (nthsc = 1.75).

f Cs
V1/V2 | Direct Paraxial | Published Direct Paraxial | Published
5 2.4561 2.4414 2.465 1308.03 | 1194.20 57.83
10 1.1770 1.1661 1.179 11.7703 15.11 10.10
20 0.6426 | 0.6314 0.630 8.3571 4.88 3.511
40 0.3332 0.3218 0.319 4.7209 1.96 1.922

Examining the progression in the focal point with increasing voltage ratio, it appears that while the
direct raytracing code works well at lower voltage ratios, as that ratio increases the accuracy of the
code decreases. This is because the more rapidly changing electric field is more difficult to describe
accurately, and so greater errors are made by the approximation which are then carried through into the
integration. The reason for the discrepancy between the paraxia approximation and the published
results is unknown, as the details of the paraxial algorithm have not been studied here. However, the
paraxial approximation consistently gives a reasonable approximation to the published results.

The direct calculation of the third-order aberration coefficient is somewhat more troublesome. Thisis
mainly because the direct technique requires a number of rays to be simulated where the effect of the
aberration is fairly pronounced (due to the errorsin the ray tracing process), and so when the aberration
is small, it becomes more difficult to get the smulation to actually display spherical aberration
behaviour so that it can be calculated. The discrepancy between the published results and the results of
both the paraxial and direct ray tracing code is of unknown origin, but the fact that the paraxial code
and direct code approximately agree (coupled with the consistently reasonable behaviour of these
methods for all the other results) implies that the published results may be incorrect for this particular
lens definition.

21

5. Conclusions

The primary aim of this project was to improved the direct ray tracing code to the point that it's
predictions are useful, and this has been achieved. While the paraxial approximation generally tends to
gives more accurate results in any given situation, the ray diagrams produced do not show exactly what
is happening whereas the direct ray tracing approach vividly illustrates the effect of spherical aberration
on the focal properties of a device. For this reason | believe the approach is of great use in terms of
device design by allowing the user to see roughly how significant the spherical aberration is and to get
an idea of the general behaviour of the lens. Also, the finite element solution for the potential has been
show to be good (although recent work suggests there may be advantages in using the more complex
second order finite element method®), and the paraxial approximation code shown to work to
consistently reasonable accuracy.

The most important development in this project has been the successful interpolation of a two-
dimensional finite element mesh, which to my knowledge has not been achieved before (at least in the
field of electro-optics). Previous direct ray tracing software has used a set of cartesian mesh points for
which high accuracy interpolation is elementary, at the cost of restricting the types of device geometry
that can be described. The new code uses the more flexible finite element approach, and the
interpolation is flexible enough to cope with awkward arrangements of elements, for example when
moving into the gap of atwo-tube lens, where the size of the elements changes rapidly.

In my opinion, the integration code is the main cause of the remaining errors in the direct ray
simulation, and can be improved in a number of ways. The inaccuracies in the Hamming predictor-
corrector routine are mainly a consequence of the need for the code to be restarted with the Runge-
Kutta routine every time the time step is halved or doubled, and this could possibly be rectified by
using the more complex HPCD algorithm'™. This version of the Hamming code gets around the
problem of restarting the predictor-corrector by storing a greater number of the previous points, and
then using this data to find the appropriate set of previous points for the halved/doubled time step by
rearrangement and interpolation of the stored points.

For more accurate results still, there are a number of ways in which the interpolation might be
improved. Firstly, only polynomials up to third order have been investigated, and quartic or quintic
interpolation may well produce even better results (at the cost of slowing down the integration process,
asamatrix of 2n x n elements must be solved). Secondly, the accuracy of the current interpolation was
improved by finding the scaling factor which most successfully conserved total energy, but the best
scaling factor will change a little for different mesh geometries, and so higher accuracy might be
obtained by making the code automatically search for the best scaling factor via the total energy
condition (although this will slow the integration down).

22

This automated total energy check leads naturally to a new approach to the ray tracing problem.
Instead of integrating the equations of motion of an electron whilst monitoring it's progress via a total
energy check, the code could use the conservation of energy principle more directly via the principle of
least action. The integration would be broken up into a set of small time steps (as before) and then the
movement of the electron from one point to the next would be achieved by finding the speed and angle
(and thus the kinetic and potential energy at the end of the interval) which gave the minimum action for
that step, perhaps by Monte Carlo methods. This would naturally lead to the path of least action
through the lens for an electron with a particular set of initial conditions, and has the advantage that the
derivative of the potential is not required. This means that the accuracy of the smulation would be
more directly defined by the quality of the finite element mesh. As this represents a significant
departure from the technique used in the current program, there was not enough time to investigate this
possibility. However, in my opinion this could form an interesting source of future research.

6. References

W Hawkes PW. & Kasper E. (1989) Principles Of Electron Optics, Volume 1 (Academic Press).
(2 PressW.H. et a (1992) Numerical Recipesin FORTRAN, 2nd Ed (Cambridge).

BINatali S. Chio D.Di Kuyatt C.E. (1971) Accurate Calculations of Properties of the Two-Tube Electrostatic Lens.
I. Improved Digital Methods for the Precise Calculation of Electric Field and Trajectories (Journa of
research of the National Bureau of Standards, 76A, no. 1, pp 27-35).

“ Munro E. (1990) Numerical modelling of electron and ion optics on personal computers (Journal of Vacuum
Science Technology, 8B, no.6, pp 1657-1665).

BlLiuZ. & XimenJ. (1993) Numerical analysis of higher-order geometrical aberrations for a two-tube
electrostatic lens (Journal of Applied Physics, 74, no. 10, pp 5946-5950).

1 Zhu X. & Munro E. (1995) Second-order finite element method and its practical application in charged particle
optics (Journal of Microscopy, 179, pt. 2, August, pp 170-180).

1 Hecht E. (1987) Optics, 2nd edition (Addison-Wesley).
8 Sturrock P. A. (1955) Static & Dynamic Electron Optics (Cambridge).

' Munro E. (1975) A Set Of Computer Programs For Calculating The Properties Of Electron Lenses (Engineering
Department, University of Cambridge ref: CUED/B- Elect TR45).

(19 Kikuchi M. (1986) Finite Element Methods In Mechanics (Cambridge).
M) juZ. & XimenJ. (1992) - (Journal of Applied Physics E, 72, pp 28).

23

Appendix A: TheFinite Element Meshes
A.1 Finite Element Mesh Used For Comparison With Natali Et Al

A.2 Finite Element Mesh Used For Comparison With Liu & Ximen:

24

Appendix B: TheRay Tracing Code: TRAJEC.FOR:

$notstrict
$notruncat e

SUBROUTI NE TRAJEC

C Programme to read in data created by BU LD and cal cul ate the paths,
C Version 6.1 M 24.10.96

C

C The file courb.fon nust be present in the environment set by DOS
$include: ‘Ilens. def’

$i nclude: ‘gracol.def’
$include: ‘trajec.def’

I NTEGER X, Y, STAT, TRAJCODE
REAL EE, L, VP

LOG CAL OWLY, PLOT

REAL*8 SLOPE

X=1
Y =3
STAT = 0

DATA X00, Y00, NRAYS, THETAL, THETA2/ 0. 05, 0.0, 5, 0. 2, 1. 0/
TRAJED = . FALSE.

TRAJCCDE = 0

EE = 0.0
| F (EE. GT.0.0) THEN
VP = SQRT(2*EE*EMR)

ELSE
VP = 0. 0e0
ENDI F
EPS = 1.E-5
5 CALL MNEW' TRAJECTORY' ,’ TRAJEC. HLP')

CALL MROWN'File: 9B!15Start KE: % eV!35Start at Z: % cm//
+ ‘158R % cm!71Paths: 9%2’')

CALL MROW’ Accuracy: 99 !'44Angles: Start % !55Stop %' //
+ ‘ degs’)

CALL MROW' Cal cul ate: Paths $Finite El.or!31$Paraxial’ //
+ ‘ l443%Aberrations !61$Magnification’)

CALL MROW'$Exit to main menu’)

CALL MENTS(1, 1, NAMVE)

CALL MREAL(1,2,’ F97.1' , EE)
CALL MREAL(1,3,’ F9@. 4", X00)
CALL MREAL(1,4,’ F97. 4", Y00)
CALL M NT(1,5,’ %', NRAYS)

CALL MREAL(2,1,’ E%. 1, EPS)
CALL MREAL(2,2,’ F9%. 2’ , THETAL)
CALL MREAL(2, 3,’ F9%. 2’ , THETA2)

10 CALL GCMX(’ Your choice?’,Y, X, STAT, *900)
GOorq(100, 200, 300, 400) Y

100 Gorq(110, 120, 130, 140, 150) X

110 Y =2
X=1
GOro 5

C Enter the start kinetic energy

120 CALL GREAL(’ Enter energy (eV) at start of paths’,
+ Y, X, EE, EE, 0., 20000. , STAT, *900)
Clnitial velocity of electrons VP
VP = SQRT(2* EE*EMR)
VAXED = . FALSE.
GOTO 5

C Enter the x,y coordinates for the start of the paths

130 CALL GREAL(' Enter Z coord.for start of paths (cm’,

25

+ Y, X, X00, X00, - 100. , ETDE2X(TEDT) , STAT, *900)

QOTO 5
140 CALL GREAL(' Enter R coord.for start of paths (cm’,
+ Y, X, Y00, YOO, - 10., 10., STAT, *900)
QOTO 5

C Enter the number of paths to be traced

150 CALL G NT(’ Enter no.of rays to be traced’,
+ Y, X, NRAYS, NRAYS, 1, LI MNOR, STAT, *900)
GOTO 5

200 GOorQ(210, 220, 230) X

210 CALL GREAL(' Enter accuracy required’,
+ Y, X, EPS, EPS, 1. e- 12, 1. e- 2, STAT, *900)
QOTO 5

220 CALL GREAL(' Enter lowest angle for a ray’,
+ Y, X, THETAL, THETAL, - 90., 90., STAT, *900)
QOTO 5

230 CALL GREAL(’ Enter highest angle for a ray’,
+ Y, X, THETA2, THETA2, THETA1, 90., STAT, *900)
GOoTO 5

300 GOrQ(310, 320, 330, 340) X
C Main calculation of paths using finite el ement nodelling

310 CALL MPUTS(’ $FI NI TE ELEMENT TRAJECTCRI ES: $')
CALL PATHS(VP, EPS, OVLY)
TRAJED = . TRUE.
TRAJCODE = 1
CALL GRAI SE(3)
CALL GRAI SE(2)
OVLY = . FALSE.

Y =3
X =3
GOTO 5

C Cal cul ation of paths using the paraxial ray equation and the axi al
C potential computed fromthe finite el ement nodel.

320 CALL FI NDAXPOT(EE, OVLY)

C Now use the interpolated axial potential stored in the common array
C VZINT to find the paraxial paths using Picht’s algorithm

PLOT = . TRUE
TRAJED = . TRUE.
TRAJCCODE = 2

CALL MPUTS(' $PARAXI AL TRAJECTORI ES: $')
CALL AXPATHS(EE, PLOT, OVLY, SLOPE)
CALL GRAI SE(3)
CALL GRAI SE(2)
CALL PREAL(’ Source at F%.2 cm’, X00)
CALL PREAL(’ with energy % eV , EE)
CALL SPOTAT(L)
CALL PREAL('!40Spot at F%.2 cnf’, L)
| F (ETDPOT(12). NE. 0. 0) THEN
CALL PREAL(’ Gun Lens % eV’ , ETDPOT(12))
ENDI F
| F (ETDPOT(23). NE. 0. 0) THEN
CALL PREAL(’'!40Cbjective Lens % eV$' , ETDPOT(23))
ENDI F
Y=3
X =3
GOoTO 5

330 I'F (.NOT. TRAJED) THEN

CALL WARN(' Cal cul ate trajectories first’)
Y =3

26

X =2
ELSE

CALL ABBERS(TRAJCCDE)
Y =3
X =3

ENDI F
GOro 5

340 CALL MAGNI F
Y =3
X =4
GOro 5

400 RETURN

900 STAT = MAX(STAT, 0)
GOoTO 5

END

SUBROUTI NE PARAXABBERS
$i ncl ude: ‘lens.def’
$include: ‘trajec.def’
LOG CAL PLOT, OVLY
I NTEGER 1, J, K, NL, NSTART, NRAYSOLD
REAL L, THETA1OLD, X000OLD
REAL*8 ASUM SLOPE

Clnitialize all the variables used for calculation of abberrations

PLOT = . FALSE.
OVLY = . FALSE.
NRAYSOLD = NRAYS
THETA1OLD = THETA1l
X00OLD = X00
NRAYS =1
THETA1 =50
Cs = 0.0D0
CcC = 0.0D0

C Find the trajectory RAD for the special ray arriving at the inage at 45
C degrees to the axis.

CALL AXPATHS(EE, PLOT, OVLY, SLOPE)
THETAL = THETA1l/ SLOPE
CALL AXPATHS(EE, PLOT, OVLY, SLOPE)

C Calculate the differential RPRIME of RAD wt Z

NSTART = 1+ NT(X00/ DELZ)
DO 10 | =NSTART+1, NAXPTS- 1
J=1-1
K= 1+1
RPRIME(1) = (RAD(K)-RAD(J))/ (2. 0D0*DELZ)
10 CONTI NUE
RPRI ME(NSTART)
RPRI VE(NAXPTS)

= RPRI ME(NSTART+1)

= RPRI ME(NAXPTS- 1)

C Formthe integrand for the spherical abberration coeff.
C Uses Munro, pl131. T and TPRIME were calculated in the
C subroutine AXPOT bel ow.

CALL SPOTAT(L)
NL =1+ NT(L/ DELZ)

DO 20 | = NSTART+1, NL
IF (RAD(1).EQ0.0) RAD(1) = 1.0D-6

AINT(1) = 5.833333333D0*T(1)**4 + 1.0DL*T(1)*T(1)*TPRI ME(1)
AINT(1) = AINT(1) + 5.0D0*TPRI ME(I)*TPRI ME(I)
AINT(1) = AINT(1)+1.866666667D1*(T(1)**3)*RPRI ME(1)/RAD(1)
AINT(1) = AINT(1)-6.0D0*(T(1)**2)*((RPRI ME(1)/RAD(1))**2)
AINT(1) = AINT(I)*SQRT(VZINT(1))*RAD(1)**4

20 CONTI NUE

27

ASUM = 0. 0D0
DO 30, |=NSTART+2, NL
ASUM = ASUM + (Al NT(I-1)+Al NT(1))*DELZ/ 2. 0DO
30 CONTI NUE

C Now get Cs in nm

CS = ASUM (6. 4D0* SQRT(ABS(ETDPOT(TEDT))))

C Now cal cul ate the chromati c abberration coefficient

DO 40 | =NSTART+1, NL
IF (RAD(1).EQ 0.0) RAD(I) = 1.0D-6
AINT(1) = 0.5D0*T(1)*RPRI ME(1)

AINT(1) = AINT(I) + 0.25D0*RAD(1)*TPRI ME(1)
AINT(1) = AINT(1) + 0.25D0*RAD(1)*T(I)**2
AINT(1) = AINT(1)*RAD(1)/SQRT(VZI NT(I1))
40 CONTI NUE
ASUM = 0. 0D0

DO 50 | =NSTART+2, NL
ASUM = ASUM + (Al NT(I-1)+Al NT(1))*DELZ/ 2. 0DO
50 CONTI NUE
CC = 1. OD1* SQRT(ETDPOT(TEDT)) * ASUM

C Reset the values of some of the variables

THETA1 = THETA1OLD
NRAYS = NRAYSOLD
RETURN
END
5
SUBROUTI NE BOUNDELS
$i nclude: ‘lens.def’

$include: ‘trajec.def’

XVAX
YMAX
XM N = 1. E8
YMN = 1.E8
DO5 | = 1, TEDT
| F (ETDELX(1).LT.XMN) XM N
| F (ETDELY(1).LT.YMN) YMN
| F (ETDE2X(1). GT. XMAX) XNMAX
| F (ETDE2Y(1). GT. YMAX) YNAX
5 CONTI NUE

-1.E8
-1.E8

ETDELX(1)
ETDELY()
ETDE2X(|)
ETDE2Y()

RETURN
END

SUBRQUTI NE FI NDEL(ZP, RP, NEL, OUT)

C Finds the number NEL of the elenment containing point Zp,Rp. If it
Cfails then it returns FALSE in QUT.

$i nclude: ‘lens.def’
$include: ‘trajec.def’

REAL*8 AREA, DET, ZP, RP
REAL XE(3), YE(3), A(3)
I NTEGER |, | EL, J, NEL
LOG CAL OUT

QUT = . FALSE.

¢ Search whole array, first setting coords for a given elenment J

28

DO 10 J = 1, TEMI
JINC = 2%J
IF (J.EQ1) JINC =1
J1 = CURREL + J
J2 = CURREL - J
DO 15 K = J1,J2,-JINC
IF (K.GE.1 .AND. K.LE. TEMI) THEN

DO20 | =1,3
IEL = ELCONN(I, K)
XE(1) = PO NTX(IEL)*SCALE
YE(1) = PO NTY(IEL)*SCALE
20 CONTI NUE

¢ Compute area of elenent K

DET = XE(2)*(YE(3)- YE(1))+XE(3)*(YE(1)- YE(2))
DET = DET + XE(1)*(YE(2)- YE(3))
AREA = 0. 5*DET

¢ Find areal coords of zp,rp relative to elenment J

A(1) = (ZP*(YE(2)-YE(3)) + RP*(XE(3)-XE(2)) +

+ (XE(2) * YE(3) - XE(3) * YE(2)))/ DET

A(2) = (ZP*(YE(3)-YE(1)) + RP*(XE(1)-XE(3)) +
+ (XE(3) * YE(1) - XE(1) * YE(3))) / DET

A(3) = (ZP*(YE(1)-YE(2)) +RP* (XE(2) - XE(1)) +
+ (XE(1) * YE(2) - XE(2) * YE(1)))/ DET

c Test whether zp,rp is inside element J. ie 0<=A(l)<=1

I F(A(1).GE. 0.0. AND. A(1).LE. 1.0) THEN
| F(A(2).GE. 0.0. AND. A(2).LE. 1.0) THEN
I F(A(3).GE. 0.0. AND. A(3).LE. 1.0) THEN

NEL = K
CURREL = NEL
GOTO 30
ENDI F
END | F
END | F
ENDI F
15 CONTI NUE
10 CONTI NUE
C If it is not in any of the elenments, then say so:
QUT = . TRUE.
30 RETURN
END

SUBRQUTI NE FI NDNN(N, NN, POSN)

C This calculates the el ement nunbers of the three nei ghbouring el enments
C to the one nunbered N. It passes back thheir nunmbers in NN(3) and

C signals via POSNif Nis on the axis (POSN="A') or on el ectrode surface
C (PCSN="E') or at lefthand end ('L") or righthand end ('R).

CIf Nis surrounded by other elements then POSN="F (for free).

$i nclude: ‘lens.def’

CHARACTER*1 POSN
| NTEGER NN(3) , NELEM 17)

I NTEGER FN, BN, N, LENGTH, NAX, NLH, NRH, NRE, BAND
INTEGER I, J, K, L

BAND
POSN

17
‘g

C Is base of element N on the axis? Zero NN at sanme tine.
NAX = 0

DO 10 1=1,3
| F (PO NTY(ELCONN(I, N)). EQ 0.0) NAX = NAX + 1

29

NN(I) = 0
10 CONTI NUE
| F (NAX. EQ 2) THEN
POSN = * A
BAND = 8
GOTO 18
ENDI F

C ls elenent such that one side is on | efthand end?

NLH = 0
DO 12 1=1,3
| F (PO NTX(ELCONN(1, N)).EQ 0.0) NLH = NLH + 1
NN(I) = 0
12 CONTI NUE
I F (NLH. EQ 2) THEN
POSN = ‘L’
GOTO 18
ENDI F

C |s element such that one side is on righthand end?

NRH = 0
LENGTH = ETDE2X(TEDT)
DO 14 1=1,3
| F (PO NTX(ELCONN(I, N)). EQ LENGTH) NRH = NRH + 1
NN(I) = 0
14 CONTI NUE
I F (NRH. EQ 2) THEN
POSN = ‘R
GOTO 18
ENDI F

Cls elenment on an el ectrode?
NRE = 0

C Put code to find extrema here when el enent has one side on an el ectrode
IF (NRE.EQ2) POSN = ‘E

Cldentify the elenments adjacent to N
18 DO 20 | =1, BAND
NELEM 1) = 0
20 CONTI NUE

K=0
DO 200 | =1, TEMI/ 2

C NN(K) will contain 3 element nunbers of the next nearest nei ghbour
C el enments. Count forwards first
FN = N + |
I F (FN. GT. TEMI) GOTO 60
DO 50 J=1, 3
DO 40 NE=1, 3
| F (ELCONN(NE, FN) . EQ ELCONN(J, N)) THEN
K=K+ 1
NELEM K) = FN
| F (K. EQ BAND) GOTO 300

ENDI F
40 CONTI NUE
50 CONTI NUE

C Backward count
60 BN = N - |
IF (BN.LT.1) GOTO 200
IF ((BN.LT.1).AND. (FN. GT. TEMI)) GOTO 300
DO 80 J=1, 3
DO 70 NE=1, 3
| F (ELCONN(NE, BN) . EQ ELCONN(J, N)) THEN
K=K+ 1
NELEM K) = BN
| F (K. EQ BAND) GOTO 300
ENDI F
70 CONTI NUE

30

80 CONTI NUE
200 CONTI NUE

C Find elenents with two nodes common to current el enent:
300 L=0
DO | =1, BAND
K=0
BNENELEM 1)
DO NE=1, 3
DO J=1, 3
| F (ELCONN(NE, BN) . EQ ELCONN(J, N)) K=K+1
ENDDO
ENDDO
IF (K.EQ2 .AND. BN.NE.0) THEN
L=L+1
NN(L) = BN
ENDI F
ENDDO
RETURN
END

SUBRQUTI NE GRAD(M EZM ERM ZC, RC, PCS)

C Finds the electric field conponents EZM ERM at the centre ZC RC of cell M

$i nclude: ‘lens.def’
$include: ‘trajec.def’
INTEGER M |, J

REAL*8 EZM ERM X(3), Y(3), Z(3), D3, 2), DET, ZC, RC
CHARACTER*1 PCS

C Set up coordi nates of element M

DO 10 1=1,3
J = ELCONN(I, M

X(1) = PO NTX(J)*SCALE
Y(1) = PO NTY(J)*SCALE
Z(1) = F(J)

C Does the current elenment have its base situated on the axis or at either
C end of the lens? If so reverse the sign of X or Y for the non-zero apex.
C If at righthand end then extend apex beyond |l ength of |ens.

IF (POS.EQ' A') THEN
IF (PO NTY(J).EQO0.0) GOro 10
Y(1) = -Y(I)
ENDI F
IF (POS.EQ ' L’) THEN
I F (PO NTX(J).EQO0.0) GOro 10
X(1) = -X(1)
ENDI F
IF (POS.EQ' R) THEN
| F (PO NTX(J). EQ ETDE2X(TEDT)) GOTO 10
X(1) = 2*ETDE2X(TEDT) - PO NTX(J)
ENDI F
C NOTE TO MP - Add code to | ook after case when POS="E - elenent has
C one side on an el ectrode.

10 CONTI NUE
C Find the determ nant of elenment M coordi nates

DET = X(2)*(Y(3)-Y(1)) + X(3)*(Y(1)-Y(2)) + X(1)*(Y(2)-Y(3))

D(1,1) = (Y(2)-Y(3))/DET
D(2,1) = (Y(3)-Y(1))/DET
D(3,1) = (Y(1)-Y(2))/DET
D(1,2) = (X(3)-X(2))/DET
(2,2) = (X(1)-X(3))/DET
D(3,2) = (X(2)-X(1))/DET
EZM = 0.0

31

ERM = 0.0

DO 20 1=1,3
EZM = EZM + Z(1)*D(1, 1)
ERM = ERM + Z(1)*D(1, 2)
20 CONTI NUE

ZC
RC

(X(1) + X(2) + X(3))/3.0
(Y(1) + Y(2) + Y(3))/3.0

RETURN
END

SUBRQUTI NE | SI TOUT(ZP, RP, QUT)

$include: ‘trajec.def’
LOG CAL OQUT
REAL*8 ZP, RP

| F ((ZP. GT. XMAX* SCALE) . OR
+ (ZP. LT. XM N+ SCALE) . OR
+ (RP. GT. YMAX* SCALE)) THEN
QUT = . TRUE.
ENDI F

RETURN
END

SUBROUTI NE MAGNI F

CALL WARN(' Code not ready yet')
RETURN

END

SUBROUTI NE PLANE(AX, AY, AZ, X, Y, Z)

C Fits a plane to the 3 points (ax,ay,az) and returns the value of z
C at the point (x,y)

REAL*8 X, Y, AX(3), AY(3), AZ(3)
REAL*8 Z, A B, C, DEN
REAL*8 BX1, BX2, BY1, BY2, BZ1, BZ2

Bzl = AZ(1) - AZ(2)
BZ2 = AZ(2) - AZ(3)
BYL = AY(1) - AY(2)
BY2 = AY(2) - AY(3)
BXL = AX(1) - AX(2)
BX2 = AX(2) - AX(3)
DEN = BX1*BY2 - BX2*BY1

A = (BZI*BY2 - BZ2*BY1)/DEN
B = (BZ2*BX1 - BZ1*BX2)/DEN
C = AZ(1) - A*AX(1) - B*AY(1)
Z = AX + B*Y + C

RETURN
END

SUBROUTI NE SORTI T

¢ Routine to order the mesh used in POTGEN.
¢ Re-order the arrays 1JK X, Y, and F.

32

Uses an index pointer nethod to change the array nunbering.
The arrays from POTGEN are nunbered to minimze the bandw dth
inthe finite elenent analysis. In order to search the arrays
logically in TRAJ they need to be nunbered in a spatially
sequence, (ie with increasing z).

OO0 000

$i nclude: ‘lens.def’
I NTEGER | NDEX(LI MPTS), | JKT(3, LI MPTS)
REAL XC(LI MPTS), XEE(3), XX, YY

C CHARACTER* 12 FNANMVE
CHARACTER* 60 MESS

XX
YY

0.0
0.0
c Initialize INDEX to the range 1 to TEMI

DO 10 | = 1, TEMI
I NDEX(1) = I
10 CONTI NUE

¢ Find the centroids (XC, YO of each el enent.
MESS = ‘ Mesh sorting...finding el enent centroids...’
CALL MBUSY(O, 0, MESS)
DO 30 | = 1, TEMT
DO 20 J =1,3
IEL = ELCONN(J, I)
XEE(J) = PO NTX(I|EL)

20 CONTI NUE
XC(1) = (XEE(1)+XEE(2) +XEE(3))/ 3. 0EO
30 CONTI NUE

¢ Sorting Routine.
MESS = ‘ Mesh sorting...exchanging pointers...’
CALL MBUSY(O, 0, MESS)
CALL QSORT(TEMT, XC, | NDEX)

¢ The code above has renunbered | as | NDEX(I).
¢ Rearrange other arrays with INDEX(l) for I.

DO 60 J=1, TEMI

DO 60 1=1,3
[JKT(1,Jd) = ELCONN(I, | NDEX(J))
60 CONTI NUE

c Wite contents of |JKT back into ELCONN

DO 70 J = 1, TEMI
DO70 | =1,3
ELCONN(I,J) = 1JKT(1,J)
CONTI NUE

~
o

Save Modified, Sorted, Mesh File. Use later when required - declare FNAME
FNAMVE = NAME

CALL CONCAT(FNAME, ' . MVH')

OPEN(UNI T=21, FI LE=FNAME, STATUS=" UNKNOWN)

WRI TE(21, 80) TEMI, TPO NT, MB

FORMAT(31 5)

WRI TE(21, 90) (XX, YY, | =1, TPQOI NT)
FORNMAT(2(2F10. 4, 4X))

WRI TE(21, 100) ((ELCONN(!,J), =1, 3),J=1, TEMI)
FORVAT(121 5)

CLOSE(UNI T=21)

CALL MPUTS(’ Sorted connectivities in file:)
CALL MPUTS(FNANVE)

CALL MPUTS(' $')

CALL MBUSY(O0,0,')

080800000
o o

Q
o
o

O0000

RETURN
END

33

SUBROUTI NE WRTRAJ(NR, NI R)

$i nclude: ‘lens.def’
$include: ‘trajec.def’
CHARACTER* 12 FNANMVE

FNAMVE = NAME
CALL CONCAT(FNAME, ' . TRJ")

IF (NNR EQ 1) THEN
OPEN(UNI T=21, FI LE=FNANME, STATUS=" UNKNOWN)
WRI TE(21,*) ‘# Set of rays fromfile: *, NAME
WRI TE(21, *) ‘# Angul ar range: ‘, THETAl,' to ‘, THETA2
WRI TE(21,*) ‘# No of rays: ‘,NR

WRI TE(21,*) ‘# Ray origin at: ‘,X00,’,", Y00
WRI TE(21,*) ‘#
ENDI F

WRI TE(21,*) ‘# Angle of ray: ‘, THETA1+DTHETAR* (N R- 1)
WRI TE(21,*) ‘# No of points in ray: ‘, KOUNT
WRI TE(21, *) *
DO 18 | = 1, KOUNT
WRI TE(21, 12) YP(3,1)/SCALE, YP(4, 1)/ SCALE
18 CONTI NUE
IF (NIR EQ NR) CLOSE(UN T=21)
10 FORMAT(| 5)
12 FORNVAT(2E25. 16)
RETURN
END

SUBRQUTI NE SPLI NE(X, Y, N, YP1, YPN, Y2)

C Routine fromPress for cubic spline interpolation using arrays X and Y.

C Gven arrays X(1:n) and Y(1:n) containing a tabulated function i.e.

Cyi= f(xi),wth x1<x2<...xn, and given values ypl and ypn for the first

C derivative of the interpolating function at points 1 and n respectively,
Cthis routine returns an array y2(1:n) of length n which contains the

C second derivative of the interpolating function at the tabul ated points
Cxi. |If ypl and/or ypn are equal to 1.E30 or larger, the routine is signaled
C to set the corresponding boundary condition for a natural spline, with

C zero 2nd derivative on that boundary.

C Paraneter NVAX is the largest anticipated value for N

I NTEGER 1, K, NMAX, N
PARAMVETER(NMAX=2000)
REAL*8 YP1, YPN, X(N), Y(N), Y2(N), U NVAX) , P, QN, SI G, UN

| F (YP1. GT..99D30) THEN
Y2(1)
u(1)
ELSE
Y2(1) = -0.5
U(1) = (0.3DL/ (X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-YP1)
ENDI F

0.0
0.0

DO 11 1=2, N1
SIG = (X(1)-X(1-1))/ (X(1+1)-X(1-1))
P = SIGY2(I-1)+2.
Y2(1) = (SIG1.)/P
U(t) = (6. 5(CYCT+1) - Y(E)) ZOXCH+1) - X)) - (Y1) - Y(1-1))

+ FOX(U) -X(1-1))) 1 (X(1+1) -X(1-1))-SI G U(1-1))/ P
11 CONTI NUE
I F (YPN. GT..99D30) THEN
N = 0.
UN = 0.
ELSE
N =05
ENB:\I; (3.7 (X(N) - X(N-1))) *(YPN(Y(N) - Y(N-1))/ (X(N) - X(N-1)))

Y2(N) = (UN-QNFU(N-1)) 7 (QNFY2(N-1) +1.)
DO 12 K=N-1,1,-1

Y2(K) = Y2(K)*Y2(K+1) +U(K)

12 CONTI NUE
RETURN
END
0

SUBRQUTI NE SPLI NT(XA, YA, Y2A, N, X, Y)

C Gven the arrays XA(1l:n) and YA(1:n) of length N, which tabulate a function
C (with the XAi's in order) and given the array Y2A(1:n) which is the output
C from SPLI NE above, and given a value of X, this routine returns a cubic-

C spline interpol ated val ue Y.

I NTEGER N, K, KHI , KLO
REAL*8 X, Y, XA(N), YA(N), Y2A(N), A, B, H

KLO = 1
KH = N
1 I F (KH -KLO GT. 1) THEN

K = (KH +KLO)/ 2

I F (XA(K).GT.X) THEN
KH = K

ELSE
KLO = K

ENDI F

GOTO 1

ENDI F

H = XA(KH) - XA(KLO)
IF (H. EQO.) PAUSE
A= (XAKH)-X)/H
B = (X-XA(KLO)/H
Y = A*YA(KLO) +B* YA(KHI) +
+ ((A**3- A) * Y2A(KLO) +(B**3- B) * Y2A(KHI)) * (H**2) / 6.
RETURN
END

SUBRQUTI NE FI NDAXPOT(EE, OVLY)

$i nclude: ‘lens.def’
$include: ‘trajec.def’
REAL EE
REAL*8 TZ, TV, LENGTH, Z
INTEGER |, J, K
LOG CAL OVLY

OVLY = . FALSE.
I F (. NOT. SORTED) THEN

CALL SORTIT
SORTED = . TRUE.
ENDI F

C Collect all the axial coordinates and their potentials into ZAX and VAX
| F (. NOT. VAXED) THEN

CALL MBUSY(O0,0,’ Cal cul ating axial potential...")
K=1

DO 10, | = 1, TEMI

DO 10, J = 1,3

I F (PO NTY(ELCONN(J, 1)).EQ 0.0) THEN
TZ = PO NTX(ELCONN(J, 1))
TV = F(ELCONN(J, 1))
IF (K.EQ1) THEN

ZAX(K) = TZ
VAX(K) = TV

K = K+l

ELSE

| F (TZ. EQ ZAX(K-1)) GOTO 10
ZAX(K) = TZ

VAX(K) = TV

C CALL PREAL(' % *‘, REAL(TZ))

35

C CALL PREAL(’ %, REAL(TV))

K = K+1
ENDI F
ENDI F
NPTS = K-1
10 CONTI NUE

ClInterpolate the axial potential onto NAXPTS evenly spaced intervals

CALL SPLI NE(ZAX, VAX, NPTS, 1. D30, 1. D30, VAXI NT)
LENGTH = DBLE(NODEX(TNODE))
DELZ = LENGTH (NAXPTS- 1)
DO 20 K = 1, NAXPTS
Z = (K-1)*DELZ
CALL SPLI NT(ZAX, VAX, VAXI NT, NPTS, Z, VZI NT(K))

C Protect agai nst subsequent divide by zero errors
I F (VZINT(K).LE. 0.0) VZINT(K)=1.0D 10

C CALL PREAL(" % ,REAL(2))

C CALL PREAL(’ 9%’ , REAL(VZI NT(K)))

20 CONTI NUE

C Now cal culate the lens strength function T
T(1) = 0.0
DO 30 K=1, NAXPTS- 2
I = K+1
J = K+2
T(1) = (VZINT(J)-VZI NT(K))/ (2. 0D0* DELZ* (EE+VZI NT(1)))
30 CONTI NUE
T(NAXPTS- 1)
T(NAXPTS) =

= T(NAXPTS- 2)
T(NAXPTS- 1)

C Now differentiate T wt Z for T prine to be used to find the
C aberration coefficients

DO 40, K = 2, NAXPTS-1
I = K-1
J = K+1
TPRIME(K) = (T(J)-T(1))/ (2. 0D0*DELZ)
40 CONTI NUE
TPRI ME(1) = TPRI ME(2)
TPRI ME(NAXPTS) = TPRI ME(NAXPTS- 1)

ENDI F
VAXED = . TRUE.
RETURN
END
o
SUBROUTI NE AXPATHS(EE, PLOT, OVLY, SLOPE)
$i nclude: ‘lens.def’

$include: ‘trajec.def’
$i ncl ude: ‘gracol . def’

REAL EE

REAL*8 Z, THETARL, THETAR2, SLOPE
I NTEGER NR, XS, YS, NSTART

LOG CAL OVLY, PLOT

CALL MBUSY(0, 0, Calculating paraxial trajectories...’)
OPEN(UNI T=41, FI LE=" PARAX. TRJ’ , STATUS=" UNKNOWN)

C First set up the values RHQ(1) and RHQ(2) for the start of each path.

THETARL = Pl * DBLE(THETAL/ 1. 8D2)
THETAR2 = Pl * DBLE(THETA2/ 1. 8D2)
I F (NRAYS. GT. 1) THEN
DTHETAR = (THETAR2- THETARL) / (NRAYS- 1)
ENDI F

C Set up the graphics screen with an outline of |ens surfaces
| F (PLOT) THEN
CALL GCLS

36

CALL DTRAJ(OVLY, XSCA, YSCA, RM N)
CALL GPROVP(1, TI TLE)
CALL GPROVP(2,’ Hit ESCAPE to exit plotting’)
XORG = 50
YORG = 20
CALL GSPAL(RAI PAL)
CALL GSCOL(WHI TE)
ENDI F

NSTART = 1+I NT(X00/ DELZ)
DO 3300 NR=1, NRAYS

RAD(NSTART) = YOO

RAD(NSTART+1) = YOO + (THETARL + (NR-1)*DTHETAR) * DELZ
RHO(NSTART) = RAD(NSTART) * ((EE+VZI NT(NSTART)) **0. 25)
RHO(NSTART+1) = RAD(NSTART+1) * ((EE+VZI NT(NSTART+1)) **0. 25)

C Now conpute Picht’s Rho and estimate the radius of the path at each Z

T(1) =0.0
DO 323 K = NSTART, NAXPTS-2
I = K+1
J = K+2
RHQ(J) = 2.0D0* RHO() - RHO(K)
RHO(J) = RHQ(J)-0.1875D0* DELZ*DELZ* T(1)*T(1)*RHO(1)
323 CONTI NUE

DO 324 K=NSTART+2, NAXPTS

RAD(K) = RHO(K)/ ((EE+VZI NT(K))**0. 25)
324 CONTI NUE

C Plot the calculated trajectory

| F (PLOT) THEN
XS = XORG + | NT(X00* XSCA)
YS = YORG + | NT((Y0O0-RM N) * YSCA)
WRI TE(41, *) X00, YOO
CALL GMOVE(XS, YS)
DO 325 K=NSTART, NAXPTS- 1
Z = X00 + (K- NSTART+1)*DELZ
XS = XORG + | NT(Z*XSCA)
YS = YORG + | NT((RAD(K) - RM N) * YSCA)
CALL GLI NE(XS, YS)
WRI TE(41, *) Z, RAD(K)
325 CONTI NUE
XS = XORG + | NT(X00* XSCA)
YS = YORG + | NT((- YOO- RM N) * YSCA)
CALL GMOVE(XS, YS)
DO 326 K=NSTART, NAXPTS- 1
Z = X00 + (K- NSTART+1)*DELZ
XS = XORG + | NT(Z*XSCA)
YS = YORG + | NT((- RAD(K)- RM N) * YSCA)
CALL GLI NE(XS, YS)
326 CONTI NUE
ENDI F
3300 CONTI NUE

C Now search one of paths for the crossovers

XSOLD = 0
| CROSS = 0
DO 3310, K=NSTART+1, NAXPTS- 1
Z = X00 + (K- NSTART)*DELZ
I F ((RAD(K-1).NE. 0.0).AND. ((RAD(K)/ RAD(K-1)).LT.0.0)) THEN
| CROSS = | CROSS + 1
SLOPE = (RAD(K-1)-RAD(K))/ (Z- XSOLD)
CROSSZ(| CROSS) = XSOLD+RAD(K- 1) / SLOPE

| F (PLOT) THEN
CALL PREAL(’ Xover at z = F98.4 cm*, REAL(CROSSZ(1 CRCSS)))
CALL PREAL(’!40S| ope =F%.4 $' , REAL(SLOPE))
ENDI F
ENDI F
XSOLD = Z
3310 CONTI NUE

37

CLOSE(UNI T=41)
RETURN
END

SUBROUTI NE SPOTAT(L)

C Finds the crossover nost

C focal point for the gun
$include: ‘lens.def’
$include: ‘trajec.def’

REAL L

| NTEGER

L=00

DO 10, |=1,!CRCSS

| F(CROSSZ(1).GT. L) L =

10 CONTI NUE

RETURN

END

distant fromthe source.

This is taken as the

CROSSZ(1)

SUBROUTI NE QSORT(N, ARR, | BRR)

C Subroutine SORT2 from Press et
C ascendi ng order

C X coordinates XC of the finite

usi ng Qui cksort,
C arrangenent of the array IBRR(1:N). Here it

al. p326. Sorts an array ARR(1:N)
whi | st

into
maki ng the corresponding re -
is mdified to sort the

el ement centroids into ascendi ng order

C whilst also rearranging the integer array |INDEX into the correspondi ng

C sequence.

I NTEGER N, M NSTACK, | BRR(N)

REAL ARR(N)
PARAMETER(Me7, NSTACK=50)

INTEGER I, I B, I R J, JSTACK,
REAL A, TEMP

JSTACK = 0

L=1

IR= N

IF (IR L.LT.M THEN

DO 12 J=L+1, IR
A = ARR(J)
IB = | BRR(J)
DO 11 1=J-1,1,-1

Insertion sort when subarray is snall

K, L, | STACK(NSTACK) , | TEMP

enough

IF (ARR(1).LE. A) GOTO 2

ARR(| +1)
| BRR(I +1)
CONTI NUE
I =0
ARR(| +1)
| BRR(I +1)
CONTI NUE

= ARR(1)
| BRR(1)

11

= A
= 1B
12

| F (JSTACK. EQ 0) RETURN

IR = | STACK(JSTACK)

L = | STACK(JSTACK- 1)

JSTACK = JSTACK - 2
ELSE

Choose nedi an of left,
K
TEMP
ARR(K)
ARR(L+1)
| TEMP
| BRR(K)
| BRR(L+1)

(L+IR)/2
ARR(K)
ARR(L+1)
TEMP

| BRR(K)

| BRR(L+1)
| TEMP

Pop stack and begin a new round of partitioning

right and centre elenments as partitioning

element A Also re-arrange so that A(L+1l)<= A(1l) <= A(IR)

38

| F (ARR(L+1).GT. ARR(IR)) THEN

TEMP = ARR(L+1)
ARR(L+1) = ARR(IR)
ARR(IR) = TEWP
| TEMP = | BRR(L+1)
I BRR(L+1) = IBRR(IR)
IBRR(IR) = I TEMP

ENDI F

IF (ARR(L).GT. ARR(I R)) THEN
TEMP = ARR(L)
ARR(L) = ARR(IR)
ARR(IR) = TEWP
| TEMP = I BRR(L)
IBRR(L) = IBRR(IR)
IBRR(IR) = I TEMP

ENDI F

IF (ARR(L+1).GT. ARR(L)) THEN
TEMP = ARR(L+1)
ARR(L+1) = ARR(L)
ARR(L) = TEMP
| TEMP = | BRR(L+1)
I BRR(L+1) = I BRR(L)
IBRR(L) = ITEMP

ENDI F

C Initiate pointers for partitioning

I =L+1

J =1IR

A = ARR(L)

IB = I BRR(L)

C Beginning of innernost |oop

C Scan up to find element > A
3 CONTI NUE
I =1 +1
IF (ARR(l).LT.A) GOTO 3
C Scan down to find elenment < A
4 CONTI NUE
J=J-1
IF (ARR(J).GT.A) GOTO 4
C If pointers crossed. Exit with partitioning conplete.
IF (J.LT.1) GOTO 5
C Exchange el enents of both arrays.
TEMP = ARR(I)
ARR(1) = ARR(J)
ARR(J) = TEMP
ITEMP = IBRR(I)
IBRR(1) = I BRR(J)
IBRR(J) = I TEMP
GOoTO 3
C End of innernost |oop.
5 ARR(L) = ARR(J)
ARR(J) = A
I BRR(L) = I BRR(J)
IBRR(J) = IB
JSTACK = JSTACK + 2
o}

C Push pointers t
C inmediately.
I F (JSTACK. GT. NSTACK) THEN
CALL PI NT(' JSTACK = % , JSTACK)
CALL PI NT(’ N=9%,N
CALL PI NT(’ NSTACK = 9%’ , NSTACK)
CALL WARN(' Fatal Error -- NSTACK too small in QSORT")
RETURN
ENDI F
IF (IR 1+1.GE J-1) THEN
| STACK(JSTACK)
| STACK(JSTACK- 1)
IR
ELSE
| STACK(JSTACK)
| STACK(JSTACK- 1)
L
ENDI F

| arger subarray on stack, process smaller subarray

1 n
- o

39

ENDI F
G&Oro 1
END

C New work by Andrew Jackson:

C (& alterations to original code)
C

C vl1.23 28/2/97

SUBROUTI NE Wi t ePot

$i nclude: ‘lens.def’

$include: ‘trajec.def’
PARAMETER (NMAX=10)
DI MENSI ON nCz(NVAX) , nCr (NMAX)
REAL*8 Yi K(4),Z, R, Pot,Dif,nCz, nCr
I NTEGER nth, |, res, cycle
LOGd CAL URK
COMWON /SPLI N nth, nCz, nCr
COWON /TEMP/ cycle
cycle=1

res=100

OPEN(UNI T=21, FI LE=" AxNodes. dat’, STATUS=" UNKNOWN')
WRI TE(21,*) ‘# Axial node potential data:’
DO I=TPAONT, 1, -1

IF (POINTY(1).EQ 0.0d0) THEN

WRI TE(21, 112) PO NTX(1)*SCALE*100. 0, F(I)

ENDI F
ENDDO
CLOSE(UNI T=21)

OPEN(UNI T=21, FI LE=" svd. dat’ , STATUS=" UNKNOVW)
R=0. 0dO
WRI TE(21,*) ‘# Potential dist for rays’
DO I1=1,res

Z=1*(0.101/res)

Yi k(3)=2z

Yi k(4)=R

CALL MeshSpline(Yi k, URK)

CALL nt haeval (nth, nCz, Yi k(3), Pot)

CALL nthadiff(nth,nCz, Yik(3),Dif)

WRI TE(21, 113) Z, Pot,Di f
ENDDO
CLOSE(UNI T=21)

OO0OO0O0O0OO0O0O0000000OO0

112 FORMAT(2F15. 8)
113 FORMAT(3F15. 8)

RETURN
END

SUBROUTI NE FI NELABBERS
C Take X-over points fromFinEl Calc and find spherical abberation CS
$include: ‘lens.def’
$include: ‘trajec.def’
PARAMETER (NMAX=20, MVAX=10)
REAL*8 AAB(5, 5), BAB(5, 5), al pha, sl ope, si g(NMAX) , AbCo(MVAX)
REAL*8 xC(NMAX) , yC(NMAX) , chi sq, covar (MVAX, MVAX)
I NTEGER ABNP, |, J, R, ABM ABN

C Set nunber of coefficient to find (f+Cs3+Cs5+...):
ABNP = 3

C Least squares svd algorithm
DO | =1, | CROSS
sig(l)=1.0d0
xC(1) =DATAN(DBLE(CROSSLOPE(1)))
yC(1) =DBLE(CROSSZ(1))
ENDDO
CALL SVDFI T(xC, yC, si g, | CROSS, AbCo, ABNP, chi sg, 2)

40

CALL SVDVAR(ABNP, covar)

C Tranfer results to an array in a shared common bl ock:
DO | =1, ABNP
AbCoErr (1, 1)=AbCo()
AbCoErr (I,2)=SQRT(covar(Il,1))
ENDDO

RETURN
END

SUBROUTI NE ABBERS(TRAJCODE)
$i nclude: ‘lens.def’
$include: ‘trajec.def’
| NTEGER TRAJCODE

I F (TRAJCODE. EQ 1 . AND. | CROSS. EQ 0) THEN
CALL WARN(’ Need at least 1 X-over for this calculation.”)
RETURN
ELSEI F (TRAJCODE. EQ 1) THEN
CALL FI NELABBERS
ELSEI F (TRAJCODE. EQ 2) THEN
CALL PARAXABBERS
ENDI F
| F (TRAJCODE. EQ 1) THEN
CALL PREAL(’ Position of focus:F%0.4 cn®%’ , AbCoErr(1,1))
CALL PREAL(’ +/-:F%0.4 cn®', AbCoErr(1,2))
CALL PREAL(’ 3rd order: F%0.4 cn®%’, AbCoErr(2,1))
CALL PREAL(’ +/-:F%8.2 cn$’, AbCoErr(2,2))
CALL PREAL(’5th order: F940.4 cn$’, AbCoErr(3,1))
CALL PREAL(’ +/-:F%8.2 cn$’, AbCoErr(3,2))
ELSEI F (TRAJCODE. EQ 2) THEN
CALL PREAL(’ Aber.coeffs: Spherical:F¥8.1 nmm, REAL(CS))
CALL PREAL('!40Chromatic: Fo%.1 m®’ , REAL(CO))
ENDI F

RETURN
END

SUBROUTI NE PATHS(VP, EPS, OVLY)
$i nclude: ‘lens.def’
$include: ‘trajec.def’
$i nclude: ‘gracol.def’
LOGE CAL OVLY, OUT, PLOTEL, CROSSED
I NTEGER KEY, NP, |, J, | EL, si gnl, si gn2, | NTK, OLDKOUNT
REAL*8 TSTART, TEND, LI NPCOT, Zi ni t, Ri ni t, VPP, H ni t, Hrax
REAL*8 Xpawet , Ypawet
REAL*8 H1, YST(4), Y(4),HM N, errs
REAL Sl ope, Inter,reslutn
EXTERNAL LI NPOT

C Wite out potential data etc for analysis:
CALL Wit ePot
OPEN(UNI T=23, FI LE=" Z. dat’ , STATUS=" UNKNOWW)
OPEN(UNI T=24, FI LE=' R dat’ , STATUS=" UNKNOVW')
OPEN(UNI T=25, FI LE=" E. dat’ , STATUS=" UNKNOVW)

PLOTEL
| CROSS
NP=4

resl ut n=0. 2d0

. FALSE.
0

C Define angular variation of rays:
THETAR = PI *DBLE(THETAL/ 1. 8D2)
I F (NRAYS. GT. 1) THEN
DTHETAR = Pl *(THETA2- THETAL) / ((NRAYS- 1) * 180. 0)
ENDI F

C Sort the data if necessary:
I F (. NOT. SORTED) THEN

CALL SORTIT
SORTED = . TRUE.
ENDI F

4

OVLY = . TRUE.

CALL GCLS

CALL DTRAJ(OVLY, XSCA, YSCA, RM N)
CALL GPROWP(1, TI TLE)

CALL GPROWP(2,’'Hit ESC to escape’)
XORG = 50

YORG = 20

CALL GSPAL(RAI PAL)

CALL GSCOL(WH TE)

C Main Loop around NRAYS

TSTART = 0.0
KMAX = LI MNNT
TEND = 0.0

er r s=DBLE(EPS)

C Make a rough estimate of transit time through structure
C Then find tinmestep fromthat:
DO 350 | = 1, TEDT
VEL = SQRT(2*ENMR* ETDPOT(1))
I F (VEL. NE. 0. 0) THEN

FLEN = (ETDE2X(1) - ETDELX(I))*SCALE
TEND = TEND + FLEN VEL
ENDI F
350 CONTI NUE
TEND = TEND

CALL PREAL(’ Transition time %0.4 secs$’ , REAL(TEND))
Hi nit = (TEND TSTART)/200. 0dO

C Find the limting values of the el ectrodes outside which the nesh
C does not extend
CALL BOUNDELS

C Plot nodes for all the el enents:
| F (PLOTEL) THEN
DO J = 1, TEMI
DOl =1,3
IEL = ELCONN(I, J)
Xpawet =DBLE(POl NTX(| EL) * SCALE)
Ypawet =DBLE(POl NTY(| EL) * SCALE)
CALL SCLI NE(Xpawet , Ypawet , Xpawet , Ypawet)
ENDDO
ENDDO
ENDI F

C Main ray | oop:
DO 500 | = 1, NRAYS
CALL TKHI T(KEY)
CALL PINT(’Path %, 1)
CURREL =1

C Correct initial electron energy by potential at current point
Zinit = X00* SCALE
Rinit = YOO*SCALE
VPP = VP + SQRT(2*LI NPOT(Zinit, Rinit)*EMR)

C Set up initial conditions

YST(1) = VPP* COS(THETAR)
YST(2) = VPP*SI N(THETAR)
YST(3) = Zinit

YST(4) = Rinit

DXSAV = H1

WRI TE(23, *) YST(1)**2+YST(2)**2, LINPOT(Zinit, Rinit), EMR
VR TE(23, *) VP, VPP

C lIntegration loop for each path. Initialising:
KOUNT = 1
INTK = -1
time = 0.0d0
QUT = . FALSE.
CROSSED = . FALSE.

C Store initial conditions and set up calc array:

42

DO J=1, NP
Y(J) =YST(J)
YP(J, KOUNT) =Y(J)

ENDDO
Hmin = 0.0dO

[+ Hrin = Hinit*errs
Hrax = Hinit*reslutn
H1 = Hmax/ 2. 0d0

C Main |l oop over the integration for a single ray:
400 OLDKOUNT=KOUNT

C Find the approxi mation to the potential surface at Z, R
CALL MeshSpline(Y, OUT)

C Hanmi ng Predictor-Correcter:
CALL HPCD(Y, NP, H1, Hrax, Hri n, errs, | NTK)

C Increnent the tinme counter:
time=time+H1

C Do we have a new ray section?
KOUNT=I NT(t i me/ Hmax) +2
I F (KOUNT. NE. OLDKOQUNT) THEN

C Store electron path in an array:
DO J=1, NP
YP(J, KOUNT) =Y(J)
ENDDO

C Plot new |line section:
CALL SCLI NE(YP(3, KOUNT- 1), YP(4, KOUNT- 1), YP(3, KOUNT), YP(4, KOUNT))

C Check for cross-over:
signl = SIG\(1, YP(4, KOUNT))
sign2 = SIG\(1, YP(4, KOUNT-1))
I F (signl.NE. sign2. AND. (THETAR GT.0.0.OR Rinit.NE. 0.0)) THEN
Sl ope (YP(4, KOUNT- 1) - YP(4, KOUNT))
+ 1 (YP(3, KOUNT- 1) - YP(3, KOUNT))
I nter YP(4, KOUNT) - Sl ope* YP(3, KOUNT)
I nter -(Inter/ Sl ope)/ SCALE
| F (. NOT. CROSSED) THEN
I CROSS = ICRCSS + 1
CROSSZ(| CROSS) = Inter
CROSSLOPE(| CROSS) = Sl ope
CROSSED = . TRUE.
ELSE
IF (Inter.GrI. CROSSZ(| CROSS)) CROSSZ(| CROSS) =I nter
CROSSLOPE(| CROSS) = Sl ope
ENDI F
C Qut put cross-over to user:
CALL PREAL(’' Xover at z = F%.2 cm‘, CROSSZ(| CRCSS))
c CALL PREAL('!40Sl ope =F%.4 $' , REAL(SLCPE))
ENDI F

C End of newsection |IF construct:
ENDI F

CIf the electron has left the system quit the |oop:
c IF (QUT) WRITE(*,*) ‘ PATHS: OUT’
I F (QUT) GOTO 410

C Check for escape key:
CALL TKHI T(KEY)

c | F (KEY. EQ 27) WRITE(*,*) ‘ PATHS: ESC
| F (KEY. EQ 27) GOTO 410

C Loop back through integration...

GOTO 400
C Plot the mrror image path
410 KEY=0

VRI TE(23, *)

VR TE(24, *)

VRl TE(25, *)

WRI TE(*, *) KOUNT

DO 449 J=1, KOUNT
449 CONTI NUE
CWite mrrored path to file and plot it too:

DO 450 J=2, KOUNT- 1

CALL SCLINE(YP(3,J-1),-YP(4,J3-1),YP(3,J),-YP(4,1J))

450 CONTI NUE

C Wite trajectories to data file ‘<NAVE>. TRJ' :
CALL WRTRAJ(NRAYS, |)

C Wite the nunber of points in this ray to the screen:
CALL PINT(’ % pts$’, KOUNT)

C If escape has been pressed, then quit from PATHS:
CALL TKHI T(KEY)
| F (KEY. EQ 27) GOTO 600

C Increase ray |launch angle:
490 THETAR = THETAR + DTHETAR
500 CONTI NUE

C End:
600 CLOSE(UNI T=23)
CLOSE(UNI T=24)
CLOSE(UNI T=25)
RETURN
END

SUBROUTI NE RungeKutta(Y, NP, h, hm n, hnax, errs, | NTK)
$i nclude: ‘lens.def’
$include: ‘trajec.def’

REAL*8 Y(4),Y1(4), Y2a(4), Y2b(4),DYDX(4),h
REAL*8 hmi n, hnex, errs, Derr
I NTEGER |, | NTK, FLAG

C Once with step = h:
17 FLAG=0
CALL RK4(Y, DYDX, NP, 0. 0dO, h, Y1)
C And twice with step = h/2:
CALL RK4(Y, DYDX, NP, 0. 0d0, 0. 5d0*h, Y2a)
CALL RK4(Y2a, DYDX, NP, 0. 0d0, 0. 5d0*h, Y2b)

IF (INTK. EQ -2) THEN
C Adaptive extrapolative RK error |evel check:
DO | =1, NP
Derr=Y2b(1)-Y1(l)
IF (Derr.CE. errs .AND. 0.5dO*h. GT. hmi n) FLAG=1
IF (Derr.LT.0.02d0*errs .AND. 2.0d0*h.LT. hmax) FLAG=2
ENDDO
ENDI F
| F (FLAG EQ 1) h=0.5d0*h
| F (FLAG EQ 2) h=2.0d0*h

C | F stepsize has changed, redo | ast step:
c I F (FLAG NE. 0) GOTO 17

C Extrapol ate:
DO | =1, NP
Y(1)=Y2b(1)+(1.0d0/ 15. 0d0) *(Y2b(1)-Y1(l))

C O normal Runge-Kutta:
c Y(1)=Y1(1)

ENDDO

RETURN

END
0

SUBROUTI NE HPCD(Y, NP, h, hmax, hmi n, errs, | NTK)
$i nclude: ‘lens.def’
$include: ‘trajec.def’

REAL*8 Y(4), DYDX(4), h, Yol d(4), DQDX(4)

REAL*8 DH(4,-8:1),DYH(4,-8:1),Del (4),P(4), Q4)
REAL*8 DH2(4,-8:1),DYH2(4,-8:1),Yt(4)

REAL*8 errs, hmax, hm n

I NTEGER |, J, | NTK, RKSTPS, FLAG

COVMON / HPCDBK/ DH, DYH, Del

Clnitialising etcetera:
c RKSTPS = 5
RKSTPS = 3
IF (INTK. EQ -1) THEN
DO | =1, NP
DO J=- RKSTPS, 1
DH(I, J)=0. 0d0
DYH(1, J) =0. 0d0
ENDDO
ENDDO
| NTK=0
ENDI F

C First shift the elements of the history arrays:
DO | =1, NP
DO J=- RKSTPS, 0
DH(1, J) =DH(I, J+1)
DYH(I, J) =DYH(I, J+1)
ENDDO
Yol d(1)=Y(I)
ENDDO

C Use this line for extrapolative RK
I NTK=0
Use this line to use adaptive RK
| NTK=-2

o0

C Now use Runge-Kutta or Hanm ng dependi ng on steps taken:
10 FLAG = 0
I F (I NTK. LE. RKSTPS) THEN
CALL RungeKutta(Y, NP, h, hm n, hnax, errs, | NTK)
CALL DERI VS(Y, DYDX)
DO | =1, NP
DH(I, 1) =Y(1)-Yol d(1)
DYH(1, 1) =DYDX(1)
Del (1)=0.0d0
ENDDO
| NTK=l NTK+1
ELSE
C Hammi ng predictor corrector:
20 DO | =1, NP
P(1)=(h/3.0d0)*(7.0d0*(DYH(I, 0)+DYH(I,-2))
+ -8.0d0*DYH(1,-1))-DH(I,-2)
Q1)=Y(1)+P(1)+(116.0d0/ 125. 0d0) *Del (1)
ENDDO
CALL DERI VS(Q DQDX)
DO | =1, NP
DYH(|, 1) =DQDX(1)
DH(I, 1) =(1. 0d0/ 8. 0d0) *(DH(1, 0) +DH(1, - 1) +3. 0d0*h
+ *(DYH(I, 1) +2. 0dO*DYH(1, 0) - DYH(1, -1)))
Del (1)=DH(I,1)-P(l)
C Change integration step or carry on:
IF (Del (1).GE errs .AND. 0.5d0*h. GE. hnin) FLAG=1
IF (Del (1).LT.0.02d0*errs . AND. 2.0d0*h. LE. hmax) FLAG=2
| F (FLAG EQ 0) THEN
DH(I, 1) =DH(I, 1) - (9. 0d0/ 125. 0d0) *Del (1)
Y(1)=Y(1)+DH(1, 1)
ENDI F
ENDDO
ENDI F

C Under stepsize change condition, rearrange data to repeat calc:
| F (FLAG EQ 1) THEN
c DO | =1, NP
DH2(1,-1)=(176.0d0*DH(1, 0) +41. 0dO*DH(I, - 1) +DH(1, - 2))/ 256. 0d0
+ -h*(-15.0d0*DYH(I, 0) +90. 0d0O*DYH(I, - 1) +15. 0dO*DYH(I, - 2)) / 256. 0dO

o0

45

DH2(I, - 2) =DH(1 , - 1)
DH2(1, - 3) =(- 112. 0d0* DH(I, 0) +109. 0d0* DH(I , - 1) +DH(1, - 2)) / 256. 0d0
+ -h*(3.0d0*DYH(I, 0) +54. 0d0* DYH(1 , - 1) - 27. 0d0* DYH(1 , - 2)) / 256. 0d0
DH2(I, - 4) =DH(1 , - 2)
Del (1) =0. 0d0
ENDDO
DO =1, NP
DO J=0,-2, -1
DH(1, J) =DH2(1, J)
Yt (1)=DH2(1, J)
CALL DERI VS(Yt, DYDX)
DYH(I, J) =DYDX(1)
ENDDO
ENDDO
h=0. 5d0* h
c | NTK=RKSTPS+1
| NTK=0
ENDI F
| F (FLAG EQ 2) THEN
DO =1, NP
DO J=0,-2, -1
DH(1, J) =DH(1, J*2)
DYH(I, J) =DYH(1, J*2)
ENDDO
Del (1) =0. 0d0
ENDDO
h=2. 0d0*h
| NTK=RKSTPS+1
| NTK=0
ENDI F

OO0OO0O0O0OO0O0O0O0000000OO0

OO0O0O0O0O0O000O0O0

C | F stepsize has changed, redo | ast step:
| F (FLAG NE.0) GOTO 10

RETURN
END

SUBROUTI NE MeshSpl i ne(Y, OUT)
$i nclude: ‘Ilens. def
$include: ‘trajec.def
PARAVETER (MVAX=10, NVAX=20)
REAL*8 Z, R, Y(4), LI NPOT
REAL*8 ZC, RC, negZ, posZ, negR, posR
REAL*8 nCz(MVAX) , nCr (MVAX) , nZ(NVAX) , nR(NVAX)
REAL*8 nPz(NVAX) , nPr (NMAX) , noksc
REAL*8 nZm pZm nRm pRm El k, Pot , chi sq, si gz(NMAX) , si gr (NMAX)
I NTEGER CEL, NN(3), nt h, nok
LOG CAL OUT, NEG, AXI S
CHARACTER*1 POSN
EXTERNAL LI NPOT
COMON / SPLI N nth, nCz, nCr

QUT = .FALSE
NEG = .FALSE
ma =4

C SVD point paraneter:
nok = 2*ma

C Spline point paraneter

c nok = m

nth = m

noksc = 1.75d0* (DBLE(nok)/2.0d0)

Z = Y(3)

R = Y(4)

IF (RLT.0.0) THEN
NEG = . TRUE

ENDI F

DO | =1, NVAX

sigz(l)=1.0d0

sigr(l)=1.0d0

ENDDO

46

C

C

C

o

oco0oo0oo0oQNn

Cc

cc
cc
cc
cc
cc

Fi nd el emrent nunber which el ectron occupies
CALL FI NDEL(Z, ABS(R), CEL, OUT)

Fi nd nearest nei ghbour elenents
CALL FI NDNN(CEL, NN, PCSN)

Find Z and R ranges such that polyn. approx. covers nore than one el ement
posZ=+1. 0d- 20
negZ=- 1. 0d- 20
posR=+1. 0d- 20
negR=- 1. 0d- 20
AXI S=. FALSE.
DOi=1,3
IF (POSN.EQ'F .AND. NN(i).EQ 0) WRI TE(*,*) POSN
IF (POSN.EQ'A .AND. NN(i).EQO0) THEN
CALL FI NDELCENT(CEL, ZC, RC)
AXI S=. TRUE.
RC=- RC
NN(i) =CEL
ELSE
CALL FI NDELCENT(NN(i), ZC, RO
CALL SCLI NE(ZC, RC, ZC, RC)
ENDI F
I F (NEG RC=-RC
2C=2C-Z
RC=RC- R
I F (ZC. GT. posZ) posZ
I F (ZC. LT. negZ) negZ
I F (RC. GT. posR) posR
I F (RC. LT.negR) negR
ENDDO

ZC

ZC
RC
RC

Asymretric spline axial symetry fix:
IF (AXI'S) negR=-posR

Symmetric spline span averagi ng:
posR=noksc* (ABS(posR) +ABS(negR))/ 2. 0d0
posZ=noksc* (ABS(posZ) +ABS(negZ))/ 2. 0d0
negR=- posR
negZ=- posZ

Find the m ni mum span size at the current point and check that
the current splines fit withinit:

CALL M nSplin(Z, R nZm pZm nRm pRm

| F (negZ. LT.nZm negZ=nZm

| F (posZ. GTI. pZm) posZ=pZm

| F (posR GT. pRm posR=pRm

Construct the two pol ynonm al appoxi nations to the potential:
DO i =1, nok

Symmetric spline def:
nZ(i)=Z+negZ+DBLE(i - 1) * (ABS(posZ) +ABS(negZ))/ DBLE(nok- 1)
nPz(i)=LI NPOT(nZ(i), R
nR(i) =R+negR+(i - 1) * (ABS(posR) +ABS(negR))/ (nok- 1)
nPr(i)=LINPOT(Z, nR(i))

Asymretric spline def:
nZ(i)=Z+noksc*negZ+noksc* (i -1)*(posZ-negZ)/ (nok-1)
nPz(i)=LI NPOT(nZ(i), R
nR(i) =R+noksc*negR+noksc* (i - 1) *(posR- negR)/ (nok- 1)
nPr(i)=LINPOT(Z, nR(i))
ENDDO

Pl ot spans of splines on the screen:
DO i =1, nok
CALL SCLINE(nZ(i),R nz(i),R
CALL SCLINE(Z, nR(i),Z nR(i))
ENDDO
CALL SCLINE(Z, R Z, R

C Find the approxi mati on coefficients:

C
C

CALL nt happr ox(nok, nZ, nPz, nCz)
CALL nt happr ox(nok, nR, nPr, nCr)

C Find the polynom al coefficients via | east-sqgrs SVDeconp:

CALL SVDFI T(nZ, nPz, si gz, nok, nCz, ma, chi sq, 1)

47

CALL SVDFI T(nR, nPr, si gr, nok, nCr, ma, chi sq, 1)

RETURN
END

SUBROUTI NE DERI VS('Y, DYDX)

$i nclude: ‘lens.def’

$include: ‘trajec.def’
PARAMETER (NVAX=10)
DI MENSI ON nCz(NMAX) , nCr (NVAX)
REAL*8 Y(4), DYDX(4), EZP, ERP, nCz, nCr, ZC, RC, Pot , LI NPQT, vsq
I NTEGER nt h, CEL, NN(3), cycl e
LOG CAL QUT, DATOUT
CHARACTER*1 POSN
COMWON /SPLI N nth, nCz, nCr
COWON /TEMP/ cycle
EXTERNAL LI NPOT

C Flag for detailed trajectory output:
DATOUT=. TRUE.

C Find differential of electric field at Z, R from polyn. approx.
CALL nthadiff(nth,nCz, Y(3), EZP)
CALL nthadiff(nth,nCr, Y(4), ERP)
CALL nt haeval (nth, nCz, Y(3), Pot)

C dd style linear gradient code
c CALL FI NDEL(Y(3), ABS(Y(4)), CEL, OUT)
c CALL FI NDNN(CEL, NN, PCSN)
c CALL GRAD(CEL, EZP, ERP, ZC, RC, POSN)
c Pot =LI NPOT(Y(3), Y(4))
C Check by pot out put
| F (DATOUT) THEN
cycl e=cycl e+1
IF (cycle. GT.25) THEN
vsQ=Y(1) **2+Y(2) **2
WRI TE(23, 131) Y(3), Pot, EZP
WRI TE(24, 131) Y(4), Pot, ERP
WRI TE(25, 132) ti me, Pot-vsqg/ (2. 0d0O* EMR)
cycle=1
ENDI F
ENDI F
131 FORMVAT(2F14. 6, E13. 5)
132 FORVAT(2E14. 6)

C Return information to integration routines in the required format.

DYDX(1) = EMR*EZP
DYDX(2) = EMR*ERP
DYDX(3) = Y(1)
DYDX(4) = Y(2)
RETURN

END

SUBROUTI NE M nSplin(X, Y, nXm pXm nYm pYm
$i nclude: ‘lens.def’
$include: ‘trajec.def’
REAL*8 X, Y, nXm pXm nYm pYm Ex1, Eyl, Ex2, Ey2
REAL*8 Xtst, Ytst,DeltX DeltY, G ad
I NTEGER I, Sign

nXnEXM NF SCALE- X
pXmEXMAX* SCALE- X
nYneYM N* SCALE- Y
pYnEYMAX* SCALE- Y

C Loop over el ectrodes:
DO | = 1, TEDT

Ex1 = ETDELX(!)* SCALE- X
Ex2 = ETDE2X(|)* SCALE- X
Eyl = ETDELY(!)*SCALE-Y
Ey2 = ETDE2Y(!)*SCALE-Y

Del t X = Ex2- Ex1
DeltY = Ey2-Eyl
C Check for new y-mn/y-max:
Sign = DSIG\(1, Ex1) + DSI G\(1, Ex2)
I F (Sign. EQ 0. AND. (Del t X. GT. 0. 0d0. OR. Del t X. LT. 0. 0d0)) THEN
Gad = DeltY/ DeltX
Ytst = Eyl - Gad*Ex1l
IF (Ytst.GT.0.0d0 . AND. Ytst.LT.pYn) pYneYtst
IF (Ytst.LT.0.0d0 .AND. Ytst.GT.nYn) nYneVtst
ENDI F
C Check for new x-m n/x- max:
Sign = DSIG\(1, Eyl) + DSI G\(1, Ey2)
I F (Sign.EQ 0. AND. (Del t Y. GT. 0.0d0. OR Del t Y. LT. 0.0d0)) THEN
Gad = DeltX/ DeltY
Xtst = Ex1 - Grad*Eyl
IF (Xtst.GT.0.0d0 . AND. Xtst.LT.pXn) pXneEXtst
IF (Xtst.LT.0.0d0 .AND. Xtst.GT.nXn) nXmeXtst
ENDI F
ENDDO

RETURN
END

SUBROUTI NE SCLI NE(z1,r1,22,12)
$include: ‘lens.def’
$include: ‘trajec.def’

REAL*8 z1,r1,2z2,r2

I NTEGER px, py

px=XORGt| NT(z1* XSCA/ SCALE)
py=YORGH| NT((r 1/ SCALE- RM N) * YSCA)
CALL GVOVE(px, py)

px=XORGt| NT(z2* XSCA/ SCALE)
py=YORGH| NT((r 2/ SCALE- RM N) * YSCA)
CALL GLI NE(px, py)

END

O
FUNCTI ON LI NPOT(X, Y)

C Code first finds the element that X and Y lie in. Then

C take the nunber N of an elenment and fit a plane to the

C three corners. Then it finds the value of z at the point

C x,y entered and outputs it for further work. Used to linearly

C interpolate V for the elenent N

$include: ‘lens.def’

$include: ‘trajec.def’

I NTEGER N, I, J
REAL*8 X, Y, LI NPOT
REAL*8 AX(3), AY(3), AZ(3)
LOG CAL ELOUT, YNEG

IF (Y.LT.0.0) THEN
Y=-v

YNEG=. TRUE.

ELSE

YNEG=. FALSE.

ENDI F

CALL FI NDEL(X, Y, N, ELOUT)
DOl =1,3

J = ELCONN(1, N)

AX(1) = PO NTX(J)*SCALE

AY(1) = PO NTY(J)*SCALE
AZ(1) = F(J)
ENDDO

49

CALL PLANE(AX, AY, AZ, X, Y, LI NPOT)
IF (YNEG Y = -Y

RETURN
END

SUBROUTI NE FI NDELCENT(N, ZC, RO)
$i nclude: ‘lens.def’
$include: ‘trajec.def’

| NTEGER N

REAL*8 ZC, RC

ZC=0. 0d0

RC=0. 0d0

DO i=1,3
j =ELCONN(i , N)
ZC=2C+POl NTX(j) * SCALE
RC=RC+PO NTY(j) * SCALE

ENDDO

ZC=ZC/ 3. 0dO

RC=RC/ 3. 0d0

END

SUBRQUTI NE nt hadi ff (N, C, x, dy)
PARAVETER (NMAX=10)

DI MENSI ON C(NVAX)

| NTEGER N

REAL*8 C, x, dy

dy=0. 0d0

DO i=2,N
dy=dy+C(i) *(i-1)*(x**(i-2))

ENDDO

END

SUBROUTI NE nt haeval (N, C, x, y)
PARAMETER (NMAX=10)

DI MENSI ON' C(NVAX)

| NTEGER N

REAL*8 C, X,y

y=C(1)

DO i=2,N
y=y+C(i) * (x**(i-1))

ENDDO

END

SUBRQUTI NE nt happrox(N, X, Y, C

PARAMETER (NVAX=10)

DI MENSI ON X(NVAX) , Y(NVAX) , C(NVAX) , A(NVAX, NVAX) , B(NVAX, NVAX)
| NTEGER N

REAL*8 X, Y,C A B

DO j =1, N

A(j, 1) =1. 0dO

DO i =2, N
A(,i)=X(j)**(i-1)
ENDDO

B(j,1)=Y(i)

ENDDO

CALL GAUSSJ(A, N, NVAX, B, 1, NVAX)
DO j =1, N

Aj)=B(i. 1)
ENDDO

50

END
O

SUBROUTI NE FUNCS(X, P, NP, 1)

IMPLICI T REAL*8 (a-h, 0-2)

PARAMETER(NMAX=20, MVAX=10)

REAL*8 P(NVAX)

INTEGER |, J
C Standard nth order polynom al:

IF (1.EQ1) THEN
P(1)=1. 0d0
DO J=2, NP
P(J)=P(J-1)*X
ENDDO
C Abberation polynomal of form1l - tan2(x) - tan4(x) -
ELSEIF (I.EQ 2) THEN
P(1)=1.0d0

DO J=2, NP
c P(J)=-(DTAN(X)) **(2*(J-1))
P(J) =- (X**(2*(J3-1)+1))/ (TAN(X))
ENDDO
ENDI F
RETURN
END
C mmmm e m e mm e
C Routines adapted fromPress et al:
o
SUBROUTI NE GAUSSJ(A, N, NP, B, M MP)
C mmmm e m e
SUBROUTI NE RK4(Y, DYDX, N, X, H, YOUT)
o
SUBROUTI NE SVDFI T(X, Y, SI G, NDATA, A, MA, CHI SQ, | FUNC)
2
SUBROUTI NE SVBKSB(M N, B, X)
G mmmm e m e m e m
SUBROUTI NE SVDVAR(MA, CVM
G mmmm e m e m e mmm
SUBROUTI NE SVDCMP(A, M N)
o

C End of TRAJEC. FOR

51

