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- Computational Fluid Dynamics Assignment

(1) Introduction

The aim of this assignment is to investigate the performance of a series of algorithms for handling the
linear advection equation in one dimension:

dt dx

Where'u' isageneral conserved quantity and the constant coefficient 'a’ represents the velocity of a
travelling wave profile (ie the wave profile being the distribution of u as afunction of x).

The techniques being investigated are: Centred difference, first order upwind (donor cell), Lax-
Wendroff, MacCormack, second and third order monotonicity preserving, and donor cell and SHASTA
flux corrected transport schemes. These algorithms will be tested to see how they cope with the
transport of sinusoidal wave profiles and with the transport of wave profiles containing discontinuities
(more specifically, the transport of square and triangular wave profiles). Following this conclusions
will be drawn as to which routines are suitable for solving fluid dynamics problems.
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(2) Method Of Simulation

The one dimensional advection equation is evaluated over afinite difference grid representing the value
of uasafunction of x. The spatial domain is made effectively infinite by the use of periodic boundary
conditions so that there is no limit to the period of time the simulation can run for. If the mesh spacing
is Dx and the time step is Dt, then given the assumption that no fluid particle should be able to move
more than one cell in each iteration period we have the Courant-Fredricks-Levy condition:

Il = |g4bt/Dx £ 1
Where ais the wave velocity from the advection equation.

In the case of this assignment the wave velocity is a constant for the whole system, and so we can
modify the finite-difference equations to be expressed purely intermsof ui and 1.

The code written to evaluate the advection equation can be broken down into two main parts: the
definition of the initial conditions and the evaluation of the finite difference representation of the
advection equation.

(2.1) Initial Conditions:

The evolution of the wave profile is analysed under two main classes of initial conditions, those for
smooth wave transport and for discontinuous wave transport. 1n both cases 127 mesh points were used.

Sinusoidal Wave Transport:
T

T
“initsin/da”

(2.1.1) Smooth Wave Transport:

In this case the quantity u is distributed along the mesh
such that it represents a continuous sinusoidal wave
(Seefig. 2.1.1). Inthisassignment, the values of ui

were made to form two whole periods of a sinusoidal
wave profile. !
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-05 -

(2.1.2) Discontinuous Wave Transport: 2l
Two different types of discontinuous wave are
considered here, first-order discontinuous waves
(square wave profiles, seefig. 2.1.2) and second-order

discontinuous waves (triangular wave profiles, seefig.
21 3) Figure (2.1.1): Initial mesh distribution for the smooth wave
e transport problem.
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Square Wave Transport: Triangular Wave Transport:
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Figure (2.1.2): Initial mesh distribution for the first-order Figure (2.1.3): Initial mesh distribution for the second-order
discontinuous wave transport problem. discontinuous wave transport problem.
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(2.2) Finite Difference Algorithms:

All of the following are Eulerian (stationary mesh) finite-difference schemes for the solution of the
advection equation, as opposed to Lagrangian schemes, where the mesh moves with the fluid.

(2.2.1) Centre Difference:
By simple (first-order) centred spatial differencing of the advection equation we obtain:

u™t = u - V2 (U - UN)
where,

| = aDt/Dx
as before.

The stability of this algorithm can be ascertained by finding the amplification factor G, defined viathe
gpatial fourier transform giving equations of the form:

Uk = U%{G[e™Px gkl-Dpx  T3n
Clearly, for a stable algorithm
Gl £ 1+ O(Dt)
However, the centre difference algorithm produces:
IGF = 1 + 1?sin?(kDx)

Which must be greater than 1, and so centre differencing should be absolutely unstable for all values of
kandl.

(2.2.2) First Order Upwind (Donor Céll):

The stability problems of the centre difference schemelie init's failure to reflect the upstream
generation of signals. If the spatial difference is calculated upstream, we find that:

u™ = u” - U - Ut) if 1>0
- (U - u") otherwise.
This leads to an amplification factor of:
IGF = 1 - 2/1|(1-]1])[1-cos(kDx)]

And so the algorithm is stableis |1| £ 1 (NB this means |G| < 1, and so the scheme must be diffusive).
Also, if we consider the amplification factor for the exact solution:

G - e 1kDx

which represents a phase shift of 1kDx per step (with no amplitude change), then comparing this to the
phase shift of the centre difference scheme, which is:

arg(G) = arctarf{-|l| sin(kDx)/[1-cos(kDx)]}

we see that the scheme solution differs from the exact solution and corresponds to waves of differing k
moving with different velocities, in other words the schemeis dispersive. NB the scheme losesiit's
dispersive properties when |1|=/, because at this point arg(G) = + **/,, which is the exact value.
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(2.2.3) Lax-Wendr off:

The previous schemes were both first order, and so the lowest order term of the error in the expansion
isasecond order diffusion term, and this |eads the the numerical diffusion problems that those schemes
experience. To solve this problem, we must include second order terms in the numerical solutions. The
Lax-Wendroff scheme was one of the first to do this effectively, and for the problem considered here, it
has the following form:

u™t = u" - /2 (U - UNg) + 122 (UM - 22U + U')
Which leads to an amplification factor of:
IGF = 1 - 1%(1-1%)[1-cos(kDx)]?

and so the scheme is stableif || £ 1. While this schemeis not diffusive, the third order error can still
lead to dispersive effects under certain conditions, eg where the wave profile is discontinuous.

(2.2.4) MacCor mack:

This second order schemeis closely related to the Lax-Wendroff algorithm, although thisis not clear
from it's appearance. For the linear advection equation, it has the following two-step form:

‘urt = u" - B(UMe - U)
u™t = Yo [ U™+ ‘U™t - I(Cu -“U)]

This scheme has the same diffusion and dispersion properties as the Lax-Wendroff scheme.

(2.2.5) Second Order Monotonicity Preserving:

In order to handle dispersive effects, implicit artificial dissipation can be used to take advantage of the
strong dissipation of the first order schemes where required, but the scheme must revert to a higher
order form elsewhere. Given that for the advection equation considered here, the solution should
preserve monotonicity (ie preserve the form of the wave profile of u), then a monotonicity preserving
scheme could clip the flux to prevent overshoot in the regions of strong gradient (eg for shocks) to
prevent the generation of short wavelength oscillations. If the changeis u is defined by aflux g such
that:

u™ = u" - 1(giws- g

Then a general monotonicity preserving scheme is defined as follows:
g+ =  U" - Y%(1-1)'Diw if 1>0
O+ = Us" - YA1+1)'Disy otherwise

where the switching is peformed by

Di+ve =  SMIN{|Di+l, 2Jui+1 - W], 2|ui - Ui-1[}
s = 0 if sign(Ui+1 - W) ,, SIgN(Ui - Ui-a)
S = sign(ui - Ui-1) otherwise
‘D s = S MIN{|D'isl, 2|ui+2 - Ui+1|, 2JUi+1 - Ui}
= 0 if sign(Uis2 - Ui+1) ,, SIQN(Ui+1 - i)
= sign(Ui+2 - Ui+z) otherwise
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The second order (Lax-Wendroff) monotonicity preserving scheme is then defined by:
Div, = (Us-W) = -Diw

Whileit is not possible to find an amplification factor for this algorithm, the Courant-Fredricks-Levy
condition should apply.

(2.2.6) Third Order Monotonicity Preserving:
This scheme is exactly the same as the second order scheme, except:

Div, = (Uirz - W) - Y3 (1+D)(Uis1 - 201 + Uia)

DTEVRE (Ui - Uia) - Y3 (1-1)(Ui - 2Ui1 + Uis2)

(2.2.7) Flux Corrected Transport (Donor Cell):

The underlying philosophy of the flux corrected schemesisto perform atwo step calculation, where
the first step uses afirst order diffusion scheme and the second step removes that diffusion, subject to
an extremum condition. Thefirst order scheme removes any ripples viadiffusion, which is then
removed without recreating the high-frequency waves. This philosophy can be used to take advantage
of some of the useful properties of the first order upwind differencing scheme, leading to the following
two step finite difference form:

‘u™t = u" - {Iuta (- DU - Ut
where,

1" =MAX{0,1}

I-=MIN{O,1}
The flux correction step then has the form:

u™t = U™ - s + fis
where,

T = SMAX{O, MIN{SDiss1, | Fissa, Disser1} }
and,

Dive = “Ui+1 - “Ui

s =  sSgn(Diw)

Fw = YL i - )

Aswith the monotonicity preserving schemes, it is difficult to identify an exact amplification factor for
the flux corrected transport schemes. However, we can approximate G via:

G = Ga Gt

Where Ga and Gt are the amplification factors for the anti-diffusion and transport stages respectively.
If we assume the anti-diffusion will limit shorter wavelengths only (ie kDx~p), then:

Ga » 1+ 2h[1-cos(kDX)]
where,  h =141|(1-]1])
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Thislead to an amplification factor of:
IGPF »  1-12h?%1-cos(kDx)]? - 16h31-cos(kDx)]®

and so the scheme should be stable for 0£ h £ /s, iethat O£ I £ 1. However, the scheme will only
maintain positivity for 0 £ 1 £ %. Also, this scheme cannot cope with regions of zero flow velocity (ie
when I = 0).

(2.2.8) Flux Corrected Transport (SHASTA):
This scheme is the same as the donor cell code above except that:

‘urt = u" - QUM - (Q + QYU - QUNy)

where,
Q' = (- 1"
Q=(+1)?

and the flux correctior has the form:
“Fe = Ys(“Uisr - ‘W)

With the same switching criteria as before. This schemeis stableif [I|£ (7/12), and positivity is
maintained for || £ Y. The SHASTA scheme is more flexible than the donor cell flux corrected
scheme due to it's ability to cope with regions of zero flow velocity.
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(3) Results

In the following results, the program was written to plot the wave front by taking into account the
speed of the wave and the time elapsed. This makes the simulation effectively Lagrangian, and also
allows easy comparison of the results with the initial conditions. All figures show the results of the
simulation as a thin black line, and the expected results (ie the initial conditions) as abroad grey line.

(3.1) Transport of Smooth Wave Profiles

This section consists of a series of results from the analysis of the 8 algorithms when applied to the
transport of smooth (sinusoidal) waves.

(3.1.1) Centre Difference Results: _ Susoidal Wave Transport.
As expected, the centre difference approach was found SR
to be completely unstable for all values of 1. Figure

(3.1.1) give an example (where 1 = 0.9) and shows how .

the wave profile was destroyed by violent dispersion os |

even after only 70 iterations. Also note that beforethe | o

wave collapsed, the algorithm had caused the amplitude
of the wave to grow, which is another symptom of the
poor stability of the algorithm.

-05 |

0 3‘2 6‘4 9‘6
X
Figure (3.1.1): Centre difference results after 70 iterations for
1=009.

(3.1.2) First Order Upwind Results:

The donor cell scheme produced a much better simulation than the centre difference algorithm, but as
shown in figure (3.1.2a), the dissipative effects of the scheme are significant after afew hundred
iterations. Experimentation also confirmed the stability condition of the upwind scheme, and figure
(3.1.2b) gives an example for thisinstability at [1] > 1.0.

Sinusoidal Wave Transport:
T

Sinusoidal Wave Transport:
T

T
T
e n “initsin/da”
"2Allrgésll2l}g‘2" _— "2AL1112/DA"

05 05 |

-05 05 |

I I I
0 32 64 96

0 32 64 96
X X
Figure (3.1.2a): First order upwind results after 500 iterations Figure (3.1.2b): First order upwind results after 100 iterations
for 1 =0.9. for 1 =1.1.
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(3.1.3) Lax-Wendroff Results:

The results for the Lax-Wendroff algorithm show that it successfully solves the problem of rapid
dissipation (seefigure (3.1.38)). Also, the stability condition for Lax-Wendroff was aso confirmed (see

figure (3.1.3b)).

Sinusoidal Wave Transport:
T

T
“initsin/da"
"3AL09I1/DA"
1
05 -
u 0
-05 F
B
. . .
0 32 64 96
X

Figure (3.1.3a): Lax-Wendroff results after 500 iterations for
1=009.

Sinusoidal Wave Transport:
T

T
"irhitsin/da"
"3ALLL1I2/DA" ——
1k
05 -
0
-05
-1
. . .
0 32 64 96

X
Figure (3.1.3b): Lax-Wendroff results after just 70 iterations
for 1 =1.1.

(3.1.4) MacCor mack Results:

As might be expected, the MacCormack algorithm has almost identical diffusion and stability
characteristics as the Lax-Wendroff. Figures (3.1.4a) and (3.1.4b) give the MacCormack results for the

same sets of conditions as figures (3.1.3a) and (3.1.3b).

Sinusoidal Wave Transport:
"initsin/da"
"4ALO9I1/DA" ——
1
05 -
u 0
-05 |
-1
0 32 64 96
X
Figure (3.1.4a): MacCormack results after 500 iterations for
1=0.9.

Sinusoidal Wave Transport:
T

T
“initsin/da”

"4AL1!.%2/DA"
L
05 /\/V\
u 0
05 |
1
. . .
0 32 64 96

X
Figure (3.1.4b): MacCormack results after just 70 iterations
for 1 =1.1.
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(3.1.5) Second Order Monotonicity Preserving Scheme Results:

This routine was found to perform well, but as show in figure (3.1.5a), the wave profile begins to
deform after afew thousand iterations (although reducing I to Y/> gave some improvement). The
stability condition was confirmed, with high gradient areas leading to dispersion for |I| > 1.0 (seefigure

Sinusoidal Wave Transport:
T T
“initsin/da”
"5AL09I2/DA" ——
1
05 -
u 0
-05
-1
I I I
0 32 64 96
X

Figure (3.1.5a): Second order monotonicity preserving

scheme results after 2000 iterations for 1 = 0.9.

Sinusoidal Wave Transport:
T

T
“initsin/da”
"5AL1112/DA"
1 H
05 <]
| |
0 | |
-0.5
Ep
I
0 32 64 96
X

Figure (3.1.5b): Second order monotonicity preserving
scheme results after 40 iterations for 1 = 1.1.

(3.1.6) Third Order Monotonicity Preserving Scheme Results:
The third order scheme was found to perform very well. Figure (3.1.6a) illustrates how the algorithm
gave very good results even after 5000 iterations. The stability condition was again confirmed to be

that |1] £ 1.0 (eg figure (3.1.6b)).

Sinusoidal Wave Transport:
“initsin/da"
"6ALO9I2/DA" —
1
05 F
u 0
-05 -
-1
0 32 64 96
X
Figure (3.1.6a): Third order monotonicity preserving scheme
results after 5000 iterations for 1 = 0.9.

Sinusoidal Wave Transport:
T

T
“initsin/da”
"6AL1112/DA"

f

]

0 32 64 96
X

-0.5

Figure (3.1.6b): Third order monotonicity preserving scheme
results after 50 iterations for I = 1.1.

°Page9'



- Computational Fluid Dynamics Assignment

(3.1.7) Flux Corrected Transport (Donor Cell) Results:
Both the flux corrected transport schemes were found to work well for 5000 iteration runs. Figure
(3.1.73) illustrated the stability of the donor cell form for 1] £ 1.0, and figure (3.1.7b) shows how the
results improve for |1| £ ¥/ (ie when the algorithm is preserving positivity).

Sinusoidal Wave Transport:

T T

“initsin/da"

"7ALO9I2/DA"
1L
05 -

u 0
-05 F
B
. . .
0 32 64 96
X

Figure (3.1.7a): Donor cell flux corrected transport scheme
results after 5000 iterations for 1 = 0.9.

(3.1.8) Flux Corrected Transport (SHASTA) Results:

This scheme was found to give very good results, with
the limit on stability playing an important role in the
quality of the simulation. Figure (3.1.8a) showsthe
("12), with figure
(3.1.8b) illustrating the stability for values of 1| below
("/12) and figure (3.1.8c) showing the improvement in

algorithm'sinstability at |I| >

resultsfor 1| £ .

Sinusoidal Wave Transport:
T

T
“initsin/da”
"8ALO6I1/DA" ——

05

-05

I
0 32 64 96
X

Figure (3.1.8b): SHASTA flux corrected transport scheme
results after 5000 iterations for 1 = 0.6.

Sinusoidal Wave Transport:
T T
“initsin/da”
"7TALO5I1/DA"

05 -

I I I
0 32 64 96
X

Figure (3.1.7b): Donor cell flux corrected transport scheme
results after 5000 iterations for I = 0.5.

Sinusoidal Wave Transport:
T

| AM MA
/ W WW VUV

T
“initsin/da”
"8ALO9I2/DA"

I I I
0 32 64 96
X

Figure (3.1.8a): SHASTA flux corrected transport scheme
results after 5000 iterations for 1 = 0.9.

Sinusoidal Wave Transport:
T

T
“initsin/da”
"8ALO5I1/DA" ——
1
05
u 0
-05
-1
I I I
0 32 64 96

X

Figure (3.1.8c): SHASTA flux corrected transport scheme
results after 5000 iterations for 1 = 0.5.
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(3.2a) Transport of Discontinuous (Square) Wave Profiles

This section consists of a series of results from the analysis of the 8 algorithms when applied to the
transport of first-order discontinuous (square) waves. Also, I was set to 0.5 throughout.

(3.2a.1) Centre Difference Results:

We have aready established that the centre difference technique is completely unstable, and this was
again found to be the case (seefig. 3.2a.1), although the algorithm failed even earlier than before.

(3.2a.2) First Order Upwind Results:
This scheme was found to very quickly dissolve the square wave profile and after 500 iterations had
produced a sinusoidal profile suffering from significant diffusion (figure (3.2a.2)).

Square Wave Transport: Square Wave Transport:
|n|tsq/dat” |n|tsq/dat
"1AI1/DAT" "2A JE—
1 1
05 - A A 05 -
u 0 u 0
| |
-1 1
0 32 64 96 0 32 64 96
X X
Figure (3.2a.1): Centre difference results after 10 iterations Figure (3.2a.2): First order upwind results after 500 iterations
for square waves. for square waves.

(3.2a.3) Lax-Wendr off Results:

Although this algorithm had previously performed well, the discontinuities in the profile quickly (after
50 iterations) lead to significant dispersion (figure (3.2a.3)), eventually leading to a smooth wave
profile.

(3.2a.4) MacCor mack:
This agorithm produced results almost exactly the same as those produced by the L ax-Wendroff
algorithm (seefig. (3.2a.4)).

Square Wave Transport:
T

Square Wave Transport:
T

T T
"initsg/dat" "initsg/dat”
"3AIl/DAT" —— "4AIL/DAT" ———

1 1k
0.5 05
u Y] u 0

-0.5 -0.5
-1 -1

I I I
32 64 96

0 32 64 96 0
X X
Figure (3.2a.3): Lax-Wendroff results after 50 iterations for Figure (3.2a.4): MacCormack results after 50 iterations for

square waves. square waves.

*Pagell-



- Computational Fluid Dynamics Assignment

(3.2a.5) Second Order Monotonicity Preserving Results:
While this routine performed better than the pervious algorithms, there was still significant lop-sided
deformation after 500 iterations (seefig. (3.2a.5)).

(3.2a.6) Third Order Monotonicity Preserving Results:

This routine performed better than the second order code, with only slight deformation of the wave
profile due to the initial effect of the artificial dissapation (seefig. (3.2a.6)). The routine was found to
still give reasonable results even after 5000 iterations.

Square Wave Transport:
T

Square Wave Transport:
T

T T
"initsg/dat" “initsg/dat”
"5AI2IDAT" "6AI2/IDAT" ———

ENaNaiNENala
N N O T N

. . . L . .
0 32 64 96 0 32 64 96
X X

Figure (3.2a.5): Second order monotonicity preserving Figure (3.2a.6): Third order monotonicity preserving scheme
scheme results after 500 iterations for square waves. results after 500 iterations for square waves.

(3.2a.7) Flux Corrected Transport (Donor Cell) Results:
Asfigure (3.2a.7) shows, this routine performed well, and in fact dealt with the shock as well as the
third order monotonicity preserving scheme.

(3.2a.8) Flux Corrected Transport (SHASTA) Results:
This algorithm also coped well (see fig. (3.2a.8)), indeed just as well as the donor cell flux corrected
transport and third order monotonicity preserving schemes.

Square Wave Transport:
T

Square Wave Transport:
T

T T
"initsg/dat" “initsg/dat"
"TAI2IDAT" ——— "8AI2/DAT"

anusiEENaEn
BRI

I I I
0 32 64 96
X

0 3‘2 6‘4 9‘6
X
Figure (3.2a.8): SHASTA flux corrected transport scheme

Figure (3.2a.7): Donor cell flux corrected transport scheme
results after 500 iterations for square waves.

results after 500 iterations for square waves.
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(3.2b) Transport of Discontinuous (Triangular) Wave Profiles

This section consists of a series of results from the analysis of the 8 algorithms when applied to the
transport of second-order discontinuous (triangular) waves. Asin the case of the square wave transport

analysis, | was set to 0.5 throughout.

(3.2b.1) Centre Difference Results:
Again this algorithm was found to be completely unstable (see fig. 3.2b.1).

(3.2b.2) First Order Upwind Results:
In this case, the routine performed better than with square waves, but still tended to quickly reduce the
wave profile to asinusoidal form (figure (3.2b.2)).

Triangular Wave Transport:
T

Triangular Wave Transport:
T

T T
“inittri/da* “inittri/da”
"1AI1/DAT" —— "2AI1/DAT"

05 /\/\/\VA ‘/\/\Mﬂﬂ ' Og
A VA q

-05

0 3‘2 6‘4 9‘6 0 3“2 6‘4 9‘6
X X
Figure (3.2b.1): Centre difference results after 30 iterations Figure (3.2b.2): First order upwind results after 100 iterations
for triangular waves. for triangular waves.

(3.2b.3) Lax-Wendr off Results:

While the dispersive properties of this algorithm did lead to some softening of the wave profile (see
figure (3.2b.3)), the profile was stable for afew hundreds of iterations, and did not tend to a sinusoidal

wave profile.

(3.2b.4) MacCor mack:
Y et again this routine produced results very similar to those of the Lax Wendroff algorithm (see fig.
(3.2b.4)).

Triangular Wave Transport: Triangular Wave Transport:
“inittri/da” “inittri/da"
"3AIL/DAT" —— "4AI1/DAT" ——
1r 1
05 - 05
u 0 u 0
-05 -05
-1 -1
0 32 64 96 0 32 64 96
X X
Figure (3.2b.3): Lax-Wendroff results after 200 iterations for Figure (3.2b.4): MacCormack results after 200 iterations for
triangular waves. triangular waves.

* Page 13 »



- Computational Fluid Dynamics Assignment

(3.2b.5) Second Order Monotonicity Preserving Results:
The lop-sided deformation apparently inherent in this algorithm appeared again for triangular waves,
becoming significant after 200 iterations (see fig. (3.2b.5)).

(3.2b.6) Third Order Monotonicity Preserving Results:
Again this routine was found to perform well, with a slight rounding of the corners of the triangular
waves allowing the profile to be consistent for afew hundred (seefig. (3.2b.6)) or even afew thousand

iterations.

Triangular Wave Transport: Triangular Wave Transport:
“inittri/da” “inittri/da”
"5AIL/DAT" "6AI1/DAT"
1 1r
05 - 05 -
u 0 u 0
-05 -05
-1 -1
0 32 64 96 0 32 64 96
X X
Figure (3.2b.5): Second order monotonicity preserving Figure (3.2b.6): Third order monotonicity preserving scheme
scheme results after 200 iterations for triangular waves. results after 500 iterations for triangular waves.

(3.2b.7) Flux Corrected Transport (Donor Cell) Results:
Again thisroutine performed well (seefig. 3.2b.7)), and again it was fractionally better than the third
order monotonicity preserving scheme.

(3.2a.8) Flux Corrected Transport (SHASTA) Results:
The SHASTA routine also coped well (seefig. (3.2b.8)), and again was not noticeably better than the
donor cell flux corrected transport scheme.

Triangular Wave Transport: Triangular Wave Transport:
"inittri/da” “inittri/da”
"7TAIL/DAT" ——— "8AI1/DAT" —
1r 1r
05 - 05 -
u 0 u 0
-05 -05
-1 -1
0 32 64 96 0 32 64 96
X X
Figure (3.2b.7): Donor cell flux corrected transport scheme Figure (3.2b.8): SHASTA flux corrected transport scheme
results after 500 iterations for triangular waves. results after 500 iterations for triangular waves.
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(4) Conclusions

When analysing the results of this assignment, it isimportant to remember that in realistic fluid flow
situations, the actual problem would be more complex than the simple advection equation, (the main
complication being that the velocity coefficient ‘a’ would no longer be constant).

(4.1) Smooth Wave Transport:

Clearly, the centre difference algorithm has no practical use. Also, whilethefirst order upwind routine
was stable, the effect of diffusion istoo great for it to be used for any problem that requires any more
than afew hundred iterations. The Lax-Wendroff and MacCormack routine both performed well under
smooth conditions, and while other the routines also worked well, the cost of implementation brings no
significant improvement in results. The straightforward second order routines are simpler (and so more
flexible), quicker and less restricting (in terms of allowed values of 1).

(4.2) Square Wave Transport:

As one would expect from the theory, all those algorithms without some form of switched artificial
dissipation performed badly under shock conditions. However, all of the algorithms with some form of
artificial dissipation performed well, with the third order monotonicity preserving scheme and both flux
corrected transport schemes all performed excellently. From thisit isclear that for any fluid simulation
running close to or above the sound speed for that fluid, one of the aforementioned three routines
should be used. Unfortunately, due to the ssimplicity of this assignment, it is not possible to test the
algorithms hard enough to determine which gives the highest accuracy.

(4.3) Triangular Wave Transport:

Predictably, the centre difference and first order upwind schemes both performed badly for triangular
wave transport, and the monotonicity preserving and flux corrected transport schemes al performed
well. The main point note is that under these conditions, the Lax-Wendroff and MacCormack routines
both performed acceptably well, which implies that for situations where shock are not involved but
there may be other sharp changes, such as a boundary layer, then the Lax-Wendroff/MacCormack
approch will cope acceptably well and give reliable results (whilst being simple, flexible and fast).
However, if such sharp changes are dominant in a simulation, or those sharp changes are to be analysed
to ahigh degree of accuracy, then one of the routines recommended for shock conditions should be
used.
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Appendix A: FORTRAN program code:

C
C
C

PROGRAM CFD Assi gnnent :
Andr ew Jackson: v1.1 4th March 1997.

C Define common vari abl es:

PARAMVETER ( M5=128)

DI MENSI ON U( - 4: M5+4) , U1( - 4: M5+4) , U2( - 4: V5+4)
COMVON / CFDREL/ U, U1, U2, am ALG iters

REAL*8 U, U1, U2, | am

I NTEGER*2 K

I NTECER |, ALG iters, stps

C
K=0
WRI TE(*,*) ‘ CFD Assignnment:’
WRI TE(*, *) '~~~ '
VWRI TE(*,*) ‘Enter |anbda:’
READ(*, *) | am
WRI TE(*, *) *
WRI TE(*,*) ‘(1) - Centred difference.’
WRI TE(*,*) ‘(2) - First order upw nd/donor cell.
WRI TE(*,*) ‘(3) - Lax-Wendroff.’
WRI TE(*,*) ‘(4) - MacCornack.’
WRI TE(*,*) ‘(5) - 2nd order nonotonicity preserving.’
WRI TE(*,*) ‘(6) - 3rd order nobnotonicity preserving.’
WRI TE(*,*) ‘(7) - FCT donor cell.’
WRI TE(*,*) ‘(8) - FCT SHASTA.’
READ( *, *) ALG
C
st ps=10
CALL I nit Conds
CALL Pl ot Sys
CALL GET_KEY@ K)
IF (K. EQZ 13B') GOTO 777
666 DO | =1, st ps
CALL Fl uxCalc
ENDDO
IF (iters. EQ 10*stps) stps=10*stps
CALL Pl ot Sys
CALL GET_KEY@ K)
IF (K.NE. Z 13B') GOTO 666
777 CALL TEXT_MODE@
STOP
END
C
g
C

SUBRQUTI NE | ni t Conds

C Define common vari abl es:

PARAMVETER ( M5=128)

DI MENSI ON U( - 4: M5+4) , U1( - 4: M5+4) , U2( - 4: V5+4)
COMVON / CFDREL/ U, U1, U2, am ALG iters

REAL*8 U, UL, U2, amtnp

I NTEGER |, ALG, i ters, wave

WRI TE(*,*) ‘(1) - Sin wave profile.’
WRI TE(*,*) ‘(2) - Square wave profile.’
WRI TE(*,*) ‘(3) - Triangular wave profile.’
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READ( *, *) wave

iters=0
DO | =- 4, M5+4
C Sin wave:
| F (wave. EQ 1) THEN
U(1)=SIN(2. 0dO*(I-1)*2. 0d0*3. 141592654/ (M5- 1))
ENDI F
C Square wave:
I F (wave. EQ 2) THEN
t np=REAL( - 1)/ REAL( M5-1)
t mp=t np- | NT(t np)
IF (tnmp.LT.0.25 .OR (tnp.GI.0.5. AND. t np. LT. 0. 75)) THEN
U(l)=-1.0d0
ELSE
U(1)=+1.0d0
ENDI F
ENDI F

C Trianglier wave:
I F (wave. EQ 3) THEN

t mp=REAL( | - 1)/ REAL( M5- 1)

t mp=t np- | NT(t np)

IF (tnp.LT.0.25) THEN

U(1)=8.0d0*(t nmp-0.125)

ELSEIF (tnp.GE. 0.25 . AND. tnp.LT.0.5) THEN
U(1)=-8.0d0*(tnmp-0.125-0. 25)

ELSEIF (tnp.GE. 0.5 . AND. tnp.LT.0.75) THEN
U(1)=8.0d0*(t np-0.125-0. 25-0. 25)

ELSElI F (tnp. GE. 0. 75) THEN
U(1)=-8.0d0*(tnp-0.125-0.25-0. 25-0. 25)

ENDI F
ENDI F

ENDDO
C

RETURN

END
C
G = m m m o e e e e e e e e e e e e e e e e e e eeeeeas
C

SUBRQOUTI NE PI ot Sys
C Define comon vari abl es:
PARAMVETER ( M5=128)
DI MENSI ON U( - 4: M5+4), U1(-4: M5+4), U2( - 4: M5+4)
COMWON / CFDREL/ U, U1, U2,l am ALG iters
REAL*8 U, U1, U2, | am
I NTEGER*2 I H, IV, | CCOL
INTEGER | ,ALG iters,offset,J

C
OPEN( UNI T=21, FI LE=" CFD. DAT’ , STATUS=" UNKNOWN )
WRI TE(21,*) ‘# Results fromal gorithm nunber ‘', ALG .’
WRI TE(21,*) ‘# After ‘,iters,’ iterations.’
WRI TE(21,*) ‘# lanbda = ‘,lam
WRI TE(21,*) ‘#
CALL VGA@
| COL=15
C

WRI TE(*,*) iters
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of fset=iters*l am
of fset =of f set - I NT(of fset/ (Ms5-1)) *( M5-1)

DO I =1, M5-1

J=I +of f set

IF (J.GI.M5-1) J=J-(Ms-1)

IF (J.LT. 1) J=J+(M5-1)

| H=400*1 / MB

I V=200- 50* U( J)

WRI TE( 21, *) |, U(J)

CALL SET _PIXEL@IH, IV, |CQ)
ENDDO

1 V=200
DO 1=1,M5-1, 2

| H=400* 1 / M5

CALL SET_PIXEL@IH, IV, 1CQ)
ENDDO

I V=250
DO 1=1, M5-1,4

| H=400* 1 / M5

CALL SET_PIXEL@IH, IV, 1CQ)
ENDDO

CLOSE( UNI T=21)
RETURN
END

SUBRQUTI NE Fl uxCal ¢
C Define comon vari abl es:
PARAMETER ( M5=128)
DI MENSI ON U(-4: M5+4), U1(-4: M5+4) , U2(-4: M5+4) , 4 - 1: M5+1)
DI MENSI ON D( - 1: M5+1)
COMMON / CFDREL/ U, U1, U2, am ALG iters
REAL*8 U, Ul, 2,1 am D, s, del ta, plam nlam delt2,delt3
REAL*8 s1, s2
INTEGER |, ALG iters

C Centre difference:
I F (ALG EQ 1) THEN

DO | =1, M5 1
UL(1) = U(I) - 0.5d0*lant(U(l+1)-U(I-1))
ENDDO

C First order upstream
ELSElI F (ALG EQ 2) THEN
DO | =1, M5-1
IF (lam GT.0.0) UL(l)
IF (lam LT.0.0) UL(l)
ENDDO

U(l) - lamf(u(l)-u(l-1))
(1) - lamF(U(l+1)-U(1))

C Lax-Wendr of f:
ELSEI F (ALG EQ 3) THEN
DO I =1, M5-1
Ul(1)=U(1)-0.5d0*l am(U(1+1)-U(I-1))+
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+ 0. 5d0*| ant| ant (U(1 +1) - 2. 0d0* U( 1) +U( 1 - 1))
ENDDO

C MacCor mack:
ELSEI F (ALG EQ 4) THEN
DO I =1, M5-1
U2(1) = uy(l) - lanm(U(l+1)-U(l))
ENDDO
U2(MB) =U2(1)
U2(0) =U2( Ms- 1)
DO I =1, M5-1
UL(I) = 0.5d0*(U(1)+U2(l) - lam(U2(1)-W2(1-1)))
ENDDO

C 2nd/ 3rd order nonotonicity preserving:
ELSEIF (ALG EQ5 .OR ALG EQ 6) THEN
DO | =0, M5-1
c 2nd or 3rd order approx:
I F (ALG EQ 5) THEN
D(1)=U(I+1)-U(l)
ELSEI F (ALG EQ 6) THEN
IF (lam GT. 0.0) THEN
D(I)=U(lI+1)-U(l)-(1.0dO+l am*(U(I +1)-2.0dO*U(1)+U(Il-1))/3.0dO0
ELSE
D(I)=U(l1)-U(l-1)-(1.0dO-lTam*(U(l)-2.0d0*U(I +1)+U(Il +2))/3.0d0
ENDI F
ENDI F
¢ Flux calc:
IF (lam GT. 0.0) THEN
s1=DSI GN( 1. 0dO, U(I +1)-U(1))
s2=DSI GN( 1. 0dO, U(I)-U(I-1))
IF (s1.Gl.s2 .OR sl1.LT.s2) THEN
s=0. 0d0
ELSE
s=s2
ENDI F
D(1)=ABS(D(1))
D(1)=s*M N(D(1),2.0d0*ABS(U(I +1)-U(1)), 2.0d0*ABS(U(I)-U(I1-1)))
ELSE
s1=DSI GN( 1. 0dO, U( I +2) - U( | +1))
s2=DSI GN( 1. 0dO, U(I +1)-U(1))
IF (s1.Gl.s2 .OR sl1.LT.s2) THEN
s=0. 0dO0
ELSE
s=sl
ENDI F
D(1)=s*M N(ABS(D(1)),2.0d0*ABS(U(I+2)-U(I +1)),
+ 2. 0dO*ABS(U(1+1)-U(1)))
ENDI F
ENDDO

DO | =0, M5- 1
IF (lam GT.0.0) G(I)=U(1)+0.5d0*(1.0do-1am*D(1)
IF (lam LE. 0.0) G(1)=U(l+1)+0.5d0* (1. 0d0+l am *D(1)
ENDDO

C Flux corrected transport: Donor cell & SHASTA:
ELSEIF (ALG EQ 7 .OR ALG EQ 8) THEN
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IF (ALG EQ 7) THEN
pl am=MAX( 0. 0dO, | am)
nl am=M N( 0. 0dO, | am)
DO | =-1, M5+1
U2(1)=U(l)-(nlam U(l+1) +(pl am nl am *U(1)-planrU(1-1))
ENDDO
ELSE
pl am=0. 5d0- | am
pl amepl ant pl am
nl anx0. 5d0+l am
nl an¥nl antnl am
DO | =-1, M5+1
U2(1)=U(1)+0.5d0*(pl anrU(Il +1) - (nl am+pl am) *U( 1) +nl antU(1-1))
ENDDO
ENDI F
U2( Ms) =U2( 1)
U2( M5+1) =U2( 2)
U2( M5+2) =U2( 3)
u2(0) =U2( Ms-1)
u2(-1)=U2(Ms-2)
u2(-2)=U2(Ms-3)
DO | =0, M5-1
IF (ALG EQ 7) THEN
D(1)=ABS(0.5d0* ABS(| am) *( 1. 0d0- ABS(I am))*(U2(1+1)-U2(1)))
ELSE
D(1)=ABS((U2(1+1)-U2(1))/8.0d0)
ENDI F
del t 3=U2(1)-U2(1-1)
del ta=U2( 1 +1) - U2(1)
del t 2=U2( | +2) - U2( | +1)
s=DSI G\( 1. 0dO0, del t a)
D(1)=s*MAX(0.0d0, M N(s*del t3,D(1),s*del t2))
ENDDO
DO | =1, M5-1
UL(1)=U2(1)-(D(1)-D(1-1))
ENDDO
ENDI F

IF (ALGEQ5 .OR ALG EQ 6) THEN
C Flux cal cul ati on:
DO I =1, M5-1
Ul()=u(l)-lanm(Qg1)-gl-1))
ENDDO
ENDI F

C Move new Ul into old U
DO I =1, M5-1
u(l) =u1(l)
ENDDO

C Fi xi ng periodic boundary:
U( M) =U( 1)
U( M5+1) =U( 2)
U( M5+2) =U( 3)
U(0) =U(M5-1)
U(- 1) =U(M5-2)
U(-2) =U(Ms- 3)

Clncrenent iteration counter:
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iters=iters+1
RETURN
END
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