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Finite Difference Simulation of a
One Dimensional Harmonic Oscillator

A comparison of three finite difference techniques

This experiment concern the comparison of three
finite difference methods to the computational
simulation of a simple harmonic oscillator.  The
techniques employed here were the Euler technique,
the velocity form of the Verlet algorithm, and Gear 3rd
order predictor-corrector method.  The experiment
concluded that the Euler algorithm was far too
inaccurate and unstable for serious use, and also that
while the Gear method is consistently the most
accurate (once a suitable time step has been found),
the inherent stability of the Verlet system (irrespective
of time step) makes it more suitable for general use.

Andrew N Jackson                                                                                          1st February 1996



Introduction
The aim of this exercise is to use a range of finite difference methods to simulate a 1-D harmonic 
oscillator, and to then use these simulations to distinguish between the performances of the different 
algorithms.  Three methods are to be implemented:

• The Euler algorithm;

• The velocity form of the Verlet algorithm;

• Gear's predictor-corrector algorithm without iteration (ie of the form PEC) using a third 
order predictor.

The performance of these methods is best evaluated by observing the behaviour of the phase space plot 
(velocity against position) for the oscillator.  Accurately simulated, the phase trajectory should form a 
circle, and an insight into the accuracy and stability of the simulation can be gained by seeing how 
closely the simulated trajectory compares to the accurate circular one.  We can also analyse 
performance by seeing how well the energy of the system is conserved over time.  Using the above 
tests, we can find which of the methods reliably produce the correct results, and what the maximum 
time step (Dt) that can be used is.
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Theory
Before the details of the finite difference methods are explained, it is first necessary to define the 
problem we are trying to solve.  The simulation of a 1-D harmonic oscillator reduces to the differential 
equation:

d2x/dt2 = - w2x

where,

w2 = k/m

given the Hook's law constant, k, and the particle mass, m.  From this it is clear that the system requires 
initial conditions for the velocity and position of the particle, and for our purposes these shall be set to 
x0 = 1 and v0 = 1.  

As previously indicated, there are three methods to be examined in this experiment:

1 • The Euler Algorithm:

This is the most simple of the algorithms and runs as follows.  Given that;

an = - w2 . xn

Then a single iteration goes as;

xn+1 = xn + vn Dt

vn+1 = vn + an Dt

2 • The Velocity Form Of The Verlet Algorithm:

Based on a forward and backward Taylor expansion, the form of this algorithm per iteration is:

xn+1 = xn + vn Dt + ½an(Dt)2

vn+1 = vn + ½(an+1 + an) Dt

3 • Gear's Predictor-Corrector without iteration using a third order predictor:

The non-iterative form of Gear's method consists of three steps, PEC:

 - Predict (3rd order):

xP
n+1 = xn + vn(Dt) + 1/2! an(Dt)2 + 1/3! bn(Dt)3

vP
n+1 = vn + an(Dt) + 1/2! bn(Dt)2

aP
n+1 = an + bn(Dt)

bP
n+1 = bn

Where bn represents the third order derivative of x with respect to time for iteration n (given an initial 
value of zero).
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 - Evaluate:

Find the difference between the predicted acceleration and the acceleration evaluated from the 
differential equation, using the predicted positions.  ie:

Da = (- w2 xp
n+1)  -  (ap

n+1)

Now, define:

DA = Da (Dt)2 / 2!

 - Correct:

Use the above information to correct all predicted derivatives.

xn+1 =  xP
n+1 + a0(DA)

vn+1 =  vP
n+1 + a1(DA)/(Dt)

an+1 =  aP
n+1 + 2!.a2(DA)/(Dt)2

bn+1 =  bP
n+1 + 3!.a3(DA)/(Dt)3

where,

a0 = 1/6

a1 = 5/6

a2 = 1

a3 = 1/3

These values for the coefficients are looked up in tables and have been chosen to promote numerical 
stability.  This scheme requires additional initial conditions such that:

a0 = -w2x0

b0 = 0

Evaluation of the performance of the above techniques is carried out using the phase space plot and 
energy calculations as indicated before.  Given a system where:

x0 = 1

v0 = 1

and,

m = k = 1

Then the oscillator should have a circular phase space trajectory of radius Ö2 and conserve a total 
energy of 1.  The range of Dt to investigate is that between 2.00 and 0.01.

At any point, the total energy of the SHO system is given by:

E = 1/2 (w2 x2 + v2)
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Method
The program I used was adapted from 'sho.f' as given on the back of the question sheet for this 
assignment.  Once modified, the program consisted of the following basic structure:

Main Program Code

Define type for all program variables, double precision where needed.
CALL initialisation subroutine (see below).
CALL output routine (see below) to output initial conditions.
Main DO loop:

Iteration DO loop (clocked):
CALL calculation routine; Euler, Verlet, Gear (see below)
Let t = t + Dt
Calculate energy at new position.
CALL output routine.

END iteration loop, after n iterations.
Find the number of seconds the iterations took and write the result to the screen.
Wait for a key press.
If key pressed was P then print  the screen.

END Main loop, unless key pressed was the space bar (ie do n more iterations).
Display on screen the total energy of the system at the last point in the simulation.
Tidy up and exit.

It can be seen from the above pseudo code that the program allows the user to carry the simulation on 
for as long as is desired, but is allowed to leave the simulation every n iterations.

Initialisation Subroutine

Decide which algorithm to use (ie set a variable to a particular value for whichever method).
Display program header and prompt user to enter a value for Dt for the simulation.
Define initial conditions (x,v,a,b) and no. of iterations (n).
Initialise graphics systems and define window and axes to put phase space plot on.
Open file for output of phase space data.

Calculation Subroutine

This consists of a set of subroutines (called Euler, Verlet and Gear), each of which is passed the relevant 
variables (x, v, w2, Dt, as well as a and b for the Gear algorithm), and then each carries out the 
Euler/Verlet/Gear calculation as outlined in the theory section above.

Output Subroutine

Having been passed the current position and velocity variables, this routine simply:
a) Outputs the phase space coordinates to the hard disc file, and
b) Plots a dot on the screen at the x, v phase space position.

The program given in the appendix is my FORTRAN implementation of the above scheme, as adapted 
from the given code.
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Analysing the performance of the routines:

The method of analysis breaks down into two sections, accuracy analysis and stability analysis.  The 
simplest way to analyse how accurate the routines are is to set the period of simulation to a fixed values 
(10 seconds, about 11/2 periods of oscillation), and experiment with a range of values for Dt.  The aim is 
to find the maximum value of Dt that gives a reasonable result for the total system energy after the 10 
seconds of simulation.  By 'a reasonable result' I mean to within some error range of the true values of 
1.0, for this example 0.1% accuracy.  This means we are looking for energy values within the range 
0.999 to 1.001.

The analysis of the stability of the routines works in a similar way.  This time we run the simulation for 
100 - 1000 seconds (ie many periods of oscillation from many iterations) using the best time step from 
the accuracy analysis above.  If a simulation is unstable then this will be illustrated graphically by the 
phase space plot, and so we can find out whether the best Dt values from the accuracy analysis are 
stable, and if not, find out at what value the solutions become acceptable stable.
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Results
As indicated in the method section, the analysis of the performance of the routines breaks down into 
two sections, accuracy and stability.

 - Accuracy Of The Algorithms:

The first routine that I examined was the Euler algorithm code.  Starting with Dt set to 0.1, I ran the 
program and recorded the calculated value for the total system energy after 10 units of simulation time 
(ie the no. of iterations depends on Dt).  Then, by altering the value of Dt, I managed to bring the error 
down to the 0.1% mark (See table 1).

As can be seen from the table, we require a very small time step to get the desired accuracy from the 
Euler method, to the point where 10 seconds of simulation time takes 29.3 seconds to calculate.

Figure 1 illustrates the characteristic of inaccuracy in the Euler method, ie the outward spiral phase 
space trajectory as shown.  All Euler solutions spiralled outwards, and altering Dt just gets the 
spiralling down to an acceptable level.  See the stability section later for more information.

The second method I examined was the Verlet algorithm.  The results for this were a lot better (see 
table 2).  The table shows that a much larger time step can be used, in this case a time step of 0.05 gives 
the desired accuracy, a value some 500 times greater than that for Euler.  The means that the calculation 
took only 0.054 seconds.
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Table 1: Euler accuracy.

Time Step Energy

0.1 2.7048

0.05 1.6477

0.01 1.1052

0.005 1.0513

0.001 1.0100

0.0005 1.0050

0.0001 1.0010

Figure 1: Euler at Dt = 0.01.
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Table 2: Verlet accuracy.

Time Step Energy

0.5 1.03242

0.1 1.00115

0.05 1.00028



Figure 2 below shows the true trajectory in phase space for the harmonic oscillator as calculated by the 
Verlet algorithm with Dt = 0.05s.

As for the Gear algorithm, the relationship between the accuracy in the energy calculation for a 
particular time step went as shown in table 3.  As can be seen from this data, the Gear code only needs 
a time step of 0.5 (10 times greater than Verlet) which in turn leads to a calculation time that will not 
register on the clock routines I used (ie less than one centisecond).  Figure 3 show the phase space 
trajectory as calculated by the Gear method with Dt = 0.5.
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Figure 2: Verlet at Dt = 0.05.
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Figure 3: Gear at Dt = 0.5.
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Table 3: Gear accuracy.

Time Step Energy

1.0 0.6553

0.5 0.99912



 - Stability Of The Algorithms:

When run over long periods of time (ie tens of thousands of iterations), the characteristics of the 
routines become more apparent.  All these experiments were conducted at the 0.1% accuracy level, ie 
with the values of Dt from the accuracy section above.  As mentioned before, the Euler algorithm 
always spirals outward, and Dt just controls the degree of spiralling.  Due to time restrictions, the 
longest simulation time I have been able to run is 100.0s as opposed to 10.0s before.  This produced the 
phase space plot in figure 4.

 

From this it is clear that the Euler algorithm is to stable to a reasonable degree, but in order to get a 
better idea of performace it should really be compared with the other algorithms.

The Verlet algorithm was impressive in that it was stable for almost any value of Dt.  Figure 5 shows 
the routine working at Dt = 1.0, and while the calculation is clearly in error (from the elliptical nature of 
the trajectory), the line is very well defined even after the 1000.0s of simulation carried out here.  The 
1000.0 seconds of simulation took 5.8 seconds to calculate, and the total system energy after this time 
was 0.999843 (ie a 0.0261% error).
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Figure 4: Stability of the Euler algorithm.



Finally we come to the stability of the Gear algorithm.  While the routine performed well with Dt = 0.5 
over 10.0 seconds of simulation, the story is very different for the 1000.0 second simulation (see figure 
6).  In order to stop the inward spiralling (ie energy loss), I reduced the value of Dt until the effect 
disappeared.  The spiralling effect only became negligible at Dt = 0.1, however, even at this value the 
routine is still quicker whilst being more accurate than the Verlet algorithm;  The 1000.0 seconds of 
simulation took 2.9 real seconds (ie two times quicker than Verlet), and gave a total system energy 
value of 0.9999843 (ie 0.00157% accuracy).
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Figure 5: Stability of the Verlet algorithm.
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Figure 6: Stability of the Gear algorithm.



Conclusion
While all the routines performed this exercise reasonably well and in an acceptable time, most 
applications of these routines would require many more particles than in this case.  This clearly makes 
the Euler algorithm unacceptable for serious computational problems.

Both the Verlet and Gear algorithms performed well, with Gear just being the quicker and more 
accurate of the two.  While on the basis of this information, one might be tempted to recommend the 
Gear algorithm, the inherent instability in it's execution could cause problems for some simulations.  In 
particular, this experiment gives no indication on how the routines would perform under many-body 
conditions, and any instability could well be amplified under these conditions.

From this I conclude that while the Verlet algorithm is slower and less accurate than Gear, it's 0.026% 
level of accuracy is sufficiently good to warrant its use on the basis of stability, as stability implies that 
the routine will perform consistently well under any circumstances.
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Appendix
FORTRAN simulation code as adapted from 'sho.f':
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      PROGRAM sho
c Fi ni t e di f f er ence si mul at i on of  a s i mpl e har moni c 
osci l l at or
c
c Pr ogr am adapt ed by AN Jackson,  1/ 1996.
c
      DOUBLE PRECI SI ON x, v, a, b, ener gy, w2, dt , t
      REAL S, F
      I NTEGER nst eps, met hod
      I NTEGER* 2 k
      CALL st ar t ( x, v, a, b, ener gy, w2, dt , nst eps, t , met hod)
      CALL out put ( x, v)
      k=32
c
      DO WHI LE ( k. eq. 32)
       CALL CLOCK@( S)
       DO i =1, nst eps
        I F ( met hod. eq. 1)  CALL Eul er ( x, v, w2, dt )
        I F ( met hod. eq. 2)  CALL Ver l et ( x, v, w2, dt )
        I F ( met hod. eq. 3)  CALL Gear ( x, v, a, b, w2, dt )
        t =t +dt
        ener gy = 0. 5d0* ( w2* x* x + v* v)
        CALL out put ( x, v)
       ENDDO
       CALL CLOCK@( F)
       WRI TE( * , * )  ‘ That  t ook ‘ , ( F- S) , ’  secs f or  ‘
     +, nst eps, ’  i t er at i ons. ’
       CALL GET_KEY@( k)
       I F ( k. EQ. I CHAR( ’ p’ ) . OR. k. EQ. I CHAR( ’ P’ ) )  CALL 
hpr i nt gs
      ENDDO
c
c Ti dy up and exi t :
c
      WRI TE( 21, * )  ‘ # Ener gy af t er  ‘ , NI NT( t / dt ) , ’  
i t er at i ons: ’
      WRI TE( 21, * )  ‘ #   ‘ , ener gy
      CLOSE( UNI T=21)
      CALL hf i ni sh
      WRI TE( 6, * )  ‘ Ener gy = ‘ , ener gy
      STOP
      END
c
c
c
      SUBROUTI NE 
st ar t ( x, v, a, b, ener gy, w2, dt , nst eps, t , met hod)
      DOUBLE PRECI SI ON x, v, a, b, ener gy, w2, dt , t
      REAL r ange
      I NTEGER nst eps, met hod
      met hod=1
      WRI TE( 6, * ) ’ One- Di mensi onal  Si mpl e Har moni c 
Osci l l at or : ’
      
WRI TE( 6, * ) ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’
      I F ( met hod. eq. 1)  WRI TE( 6, * ) ’ [ Eul er  ver si on] ’
      I F ( met hod. eq. 2)  WRI TE( 6, * ) ’ [ Ver l et  ver si on] ’
      I F ( met hod. eq. 3)  WRI TE( 6, * ) ’ [ Gear  ver si on] ’
      WRI TE( 6, * ) ’  ‘
      WRI TE( 6, * ) ’  ‘
      WRI TE( 6, * ) ’ Ent er  t i me st ep ( sec) : ’
      READ( 5, * ) dt
      w2=1. 0d0
      t =0. 0d0
      x=1. 0d0
      v=1. 0d0
      a=- w2* x
      b=0. 0d0
      r ange=2. 0
      nst eps=NI NT( 100. 0/ dt )
      ener gy = 0. 5d0* ( w2* x* x + v* v)
c
c  Gr aphi cal  i ni t i al i sat i on
c
      CALL hpr epi t
      CALL hdef wi n( 1, - r ange, r ange, - r ange, r ange,
     +200, 450, 100, 400)

      CALL hset wi n( 1)
      CALL hset col ( 7)
      CALL hpl ot ax( ’ posi t i on’ , ’ vel oci t y ’ )
      CALL hset col ( 7)
c
c  Out put  f i l e i ni t i al i sat i on
c
      OPEN( UNI T=21,  FI LE=’ SHO. OUT’ ,  STATUS=’ UNKNOWN’ )
      WRI TE( 21, * )  ‘ # Out put  f or m sho. f or ’
      I F ( met hod. eq. 1)  WRI TE( 21, * ) ’ #[ Eul er  ver si on] ’
      I F ( met hod. eq. 2)  WRI TE( 21, * ) ’ #[ Ver l et  ver si on] ’
      I F ( met hod. eq. 3)  WRI TE( 21, * ) ’ #[ Gear  ver si on] ’
      WRI TE( 21, * )  ‘ # ‘
      WRI TE( 21, * )  ‘ # posi t i on, vel oci t y ’
      RETURN
      END
c
c
      SUBROUTI NE Eul er ( x, v, w2, dt )
c Eul er  al gor i t hm
      DOUBLE PRECI SI ON x, v, w2, dt , a
       a = - w2* x
       x = x + v* dt
       v = v + a* dt
      RETURN
      END
c
c
      SUBROUTI NE Ver l et ( x, v, w2, dt )
c Ver l et  al gor i t hm i n i t s ’  vel oci t y f or m:
      DOUBLE PRECI SI ON x, v, w2, dt , a1, a2
       a1 = - w2* x
       x = x + v* dt  + 0. 5d0* a1* dt * dt
       a2 = - w2* x
       v = v + 0. 5d0* ( a2+a1) * dt
      RETURN
      END
c
c
      SUBROUTI NE Gear ( x, v, a, b, w2, dt )
c Gear  t hi r d- or der  PEC non- i t er at i ve al gor i t hm:
      DOUBLE PRECI SI ON x, v, a, b, w2, dt , Da, I dt
c Pr edi ct :
       x = x + v* dt  + 0. 5d0* a* dt * dt  + 
0. 166666666d0* b* dt * dt * dt
       v = v + a* dt  + 0. 5d0* b* dt * dt
       a = a + b* dt
       b = b
c Eval uat e:
       Da = 0. 5d0* ( ( - w2* x)  -  a) * dt * dt
c Cor r ect :
       I dt =1. 0d0/ dt
       x = x + 0. 166666666d0* Da
       v = v + 0. 833333333d0* Da* I dt
       a = a + 2. 0d0* Da* I dt * I dt
       b = b + 2. 0d0* Da* I dt * I dt * I dt
      RETURN
      END
c
c
      SUBROUTI NE out put ( x, v)
      DOUBLE PRECI SI ON x, v
      WRI TE( 21, 25)  x, v
 25   FORMAT( 5F12. 6)
      CALL hmovet o( REAL( x) , REAL( v) )
      CALL hl i net o( REAL( x) , REAL( v) )
      RETURN
      END


