Finite Difference Simulation of a /i

One Dimensional Harmonic Oscillator

A comparison of three finite difference techniques

This experiment concern the comparison of three
finite difference methods to the computational
simulation of a simple harmonic oscillator. The
techniques employed here were the Euler technique,
the velocity form of the Verlet algorithm, and Gear 3rd
order predictor-corrector method. The experiment
concluded that the Euler algorithm was far too
inaccurate and unstable for serious use, and also that
while the Gear method is consistently the most
accurate (once a suitable time step has been found),
the inherent stability of the Verlet system (irrespective
of time step) makes it more suitable for general use.

Andrew N Jackson
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I ntroduction

The aim of this exerciseisto use arange of finite difference methods to ssimulate a 1-D harmonic
oscillator, and to then use these simulations to distinguish between the performances of the different
algorithms. Three methods are to be implemented:

. The Euler agorithm;
. The velocity form of the Verlet algorithm;

. Gear's predictor-corrector algorithm without iteration (ie of the form PEC) using athird
order predictor.

The performance of these methods is best evaluated by observing the behaviour of the phase space plot
(velocity against position) for the oscillator. Accurately simulated, the phase trgjectory should form a
circle, and an insight into the accuracy and stability of the simulation can be gained by seeing how
closely the ssmulated tragjectory compares to the accurate circular one. We can also analyse
performance by seeing how well the energy of the system is conserved over time. Using the above
tests, we can find which of the methods reliably produce the correct results, and what the maximum
time step (Dt) that can be used is.
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Theory

Before the details of the finite difference methods are explained, it isfirst necessary to define the
problem we are trying to solve. The simulation of a 1-D harmonic oscillator reduces to the differential
equation:

d?x/dt?

- WX
where,
w2 = k/m

given the Hook's law constant, k, and the particle mass, m. From thisit isclear that the system requires
initial conditions for the velocity and position of the particle, and for our purposes these shall be set to
Xo=1landvo=1.

As previoudly indicated, there are three methods to be examined in this experiment:

1« The Euler Algorithm:

Thisisthe most simple of the algorithms and runs as follows. Given that;

& = -W2.Xp
Then asingle iteration goes as;
Xn+1 = Xn + Vn Dt

Vel = Vn + an Dt

2+ The Velocity Form Of The Verlet Algorithm:

Based on aforward and backward Taylor expansion, the form of this algorithm per iteration is:

Xn#1 = Xn+ Vn Dt + ]/2&1(Dt)2
Viel = Vn + 1/2(a1+1 + aﬂ) Dt

3« Gear's Predictor-Corrector without iteration using a third order predictor:

The non-iterative form of Gear's method consists of three steps, PEC:

- Predict (3rd order):
XPne1 = Xn+ Vn(Dt) + Y2 an(Dt)? + /3 ba(Dt)?
VP = Vn+ a(Dt) + Y2 bn(Dt)?
i = &+ bn(Dt)
b1 =  bn

Where b, represents the third order derivative of x with respect to time for iteration n (given an initial
value of zero).
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- Evaluate;

Find the difference between the predicted acceleration and the acceleration evaluated from the
differential equation, using the predicted positions. ie:

Da = (- w? Xpn+1) - (a)n+l)
Now, define;

DA = Da (Dt)?/ 2!
- Correct:

Use the above information to correct al predicted derivatives.
Xn+1 = X i1 + @o(DA)
Vel = VPt + a1(DA)/(Dt)

a1 + 21.a2(DA)/(Dt)?

bP1 + 3!.as(DA)/(Dt)?

S+l
bn+l

where,

o = s
a = b
e = 1

& = '

These values for the coefficients are looked up in tables and have been chosen to promote numerical
stability. This scheme requires additional initial conditions such that:

a0 = -WXo
bo=0

Evaluation of the performance of the above techniquesis carried out using the phase space plot and
energy calculations as indicated before. Given a system where:

Xo=1

Vo=1
and,

m=k=1

Then the oscillator should have a circular phase space trgjectory of radius 2 and conserve atotal
energy of 1. Therange of Dt to investigate is that between 2.00 and 0.01.

At any point, the total energy of the SHO system is given by:

E =12 (wW?x?+V?)
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Method

The program | used was adapted from 'sho.f' as given on the back of the question sheet for this
assignment. Once modified, the program consisted of the following basic structure:

Main Program Code

Define type for all program variables, double precision where needed.
CALL initialisation subroutine (see below).
CALL output routine (see below) to output initial conditions.
Main DO loop:
Iteration DO loop (clocked):
CALL calculation routine; Euler, Verlet, Gear (see below)
Lett=1t+ Dt
Calculate energy at new position.
CALL output routine.
END iteration loop, after n iterations.
Find the number of seconds the iterations took and write the result to the screen.
Wait for a key press.
If key pressed was P then print the screen.
END Main loop, unless key pressed was the space bar (ie do n more iterations).
Display on screen the total energy of the system at the last point in the simulation.
Tidy up and exit.

It can be seen from the above pseudo code that the program allows the user to carry the simulation on
for aslong asis desired, but is allowed to leave the ssimulation every n iterations.

Initialisation Subroutine

Decide which algorithm to use (ie set a variable to a particular value for whichever method).
Display program header and prompt user to enter a value for Dt for the simulation.

Define initial conditions (x,v,a,b) and no. of iterations (n).

Initialise graphics systems and define window and axes to put phase space plot on.

Open file for output of phase space data.

Calculation Subroutine

This consists of a set of subroutines (called Euler, Verlet and Gear), each of which is passed the relevant
variables (x, v, w?, Dt, as well as a and b for the Gear algorithm), and then each carries out the
Euler/Verlet/Gear calculation as outlined in the theory section above.

Output Subroutine

Having been passed the current position and velocity variables, this routine simply:
a) Outputs the phase space coordinates to the hard disc file, and
b) Plots a dot on the screen at the x, v phase space position.

The program given in the appendix is my FORTRAN implementation of the above scheme, as adapted
from the given code.
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Analysing the performance of the routines:

The method of analysis breaks down into two sections, accuracy analysis and stability analysis. The
simplest way to analyse how accurate the routines are isto set the period of simulation to afixed values
(10 seconds, about 1%/ periods of oscillation), and experiment with arange of valuesfor Dt. Theaimis
to find the maximum value of Dt that gives areasonable result for the total system energy after the 10
seconds of simulation. By 'areasonable result’ | mean to within some error range of the true values of
1.0, for this example 0.1% accuracy. This meanswe are looking for energy values within the range
0.999 to 1.001.

The analysis of the stability of the routinesworksin asimilar way. Thistime we run the smulation for
100 - 1000 seconds (ie many periods of oscillation from many iterations) using the best time step from
the accuracy analysis above. If asimulation is unstable then thiswill be illustrated graphically by the
phase space plot, and so we can find out whether the best Dt values from the accuracy analysis are
stable, and if not, find out at what value the solutions become acceptable stable.
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Results

Asindicated in the method section, the analysis of the performance of the routines breaks down into
two sections, accuracy and stability.

- Accuracy Of The Algorithms:

The first routine that | examined was the Euler algorithm code. Starting with Dt set to 0.1, | ran the
program and recorded the calculated value for the total system energy after 10 units of simulation time
(iethe no. of iterations depends on Dt). Then, by atering the value of Dt, | managed to bring the error
down to the 0.1% mark (Seetable 1).

As can be seen from the table, we require a very small time step to get the desired accuracy from the
Euler method, to the point where 10 seconds of simulation time takes 29.3 seconds to calculate.

Figure 1 illustrates the characteristic of inaccuracy in the Euler method, ie the outward spiral phase
space trgjectory as shown. All Euler solutions spiralled outwards, and altering Dt just gets the
spiralling down to an acceptable level. See the stability section later for more information.

2 T
dt=0.01

15 |- : i

! Time Step Energy

o 0.1 2.7048
_ 0.05 1.6477
B 0.01 1.1052
g 0.005 1.0513
0 0.001 1.0100
B 0.0005 1.0050
0.0001 1.0010

-1.5 Table 1: Euler accuracy.

Position

Figure 1: Euler at Dt = 0.01.

The second method | examined was the Verlet algorithm. The results for thiswere alot better (see

table 2). The table shows that a much larger time step can be used, in this case atime step of 0.05 gives
the desired accuracy, a value some 500 times greater than that for Euler. The means that the calculation
took only 0.054 seconds.

Time Step Energy
0.5 1.03242

0.1 1.00115
0.05 1.00028

Table 2: Verlet accuracy.
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Figure 2 below shows the true trgjectory in phase space for the harmonic oscillator as calculated by the
Verlet algorithm with Dt = 0.05s.

2 ‘ T
; dt = 0.05
15 .
1
0.5
2
8 0
(3]
>
-0.5
-1
15 - B
_2 | | L
-2 15 1 0.5 0 0.5 1 15 2
Position

Figure 2: Verlet at Dt = 0.05.

Asfor the Gear agorithm, the relationship between the accuracy in the energy calculation for a
particular time step went as shown intable 3. As can be seen from this data, the Gear code only needs
atime step of 0.5 (10 times greater than Verlet) which in turn leads to a calculation time that will not
register on the clock routines | used (ie less than one centisecond). Figure 3 show the phase space
trajectory as calculated by the Gear method with Dt = 0.5.

2 ‘ ‘
dt=05 ——
15 - i
05 |
Time Step Energy
g o 1.0 0.6553
g 0.5 0.99912
03 Table 3: Gear accuracy.
15 _
_2 1 1 1 i 1 1 1
-2 15 1 0.5 0 0.5 1 1.5 2
Position

Figure 3: Gear at Dt = 0.5.
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- Sability Of The Algorithms:

When run over long periods of time (ie tens of thousands of iterations), the characteristics of the
routines become more apparent. All these experiments were conducted at the 0.1% accuracy level, ie
with the values of Dt from the accuracy section above. As mentioned before, the Euler algorithm
always spirals outward, and Dt just controls the degree of spiralling. Due to time restrictions, the
longest simulation time | have been able to run is 100.0s as opposed to 10.0s before. This produced the
phase space plot in figure 4.

Figure 4: Stability of the Euler algorithm.

From thisit is clear that the Euler algorithm is to stable to a reasonable degree, but in order to get a
better idea of performace it should really be compared with the other algorithms.

The Verlet algorithm was impressive in that it was stable for almost any value of Dt. Figure 5 shows
the routine working at Dt = 1.0, and while the calculation is clearly in error (from the elliptical nature of
the trgjectory), the lineis very well defined even after the 1000.0s of simulation carried out here. The
1000.0 seconds of simulation took 5.8 seconds to calculate, and the total system energy after thistime
was 0.999843 (ie a 0.0261% error).
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Figure 5: Stability of the Verlet algorithm.

Finally we come to the stability of the Gear algorithm. While the routine performed well with Dt = 0.5
over 10.0 seconds of simulation, the story isvery different for the 1000.0 second simulation (see figure
6). In order to stop the inward spiralling (ie energy loss), | reduced the value of Dt until the effect
disappeared. The spiralling effect only became negligible at Dt = 0.1, however, even at this value the
routineis still quicker whilst being more accurate than the Verlet algorithm; The 1000.0 seconds of
simulation took 2.9 real seconds (ie two times quicker than Verlet), and gave atotal system energy
value of 0.9999843 (ie 0.00157% accuracy).
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Figure 6: Stability of the Gear algorithm.
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Conclusion

While all the routines performed this exercise reasonably well and in an acceptabl e time, most
applications of these routines would require many more particles than in this case. This clearly makes
the Euler algorithm unacceptable for serious computational problems.

Both the Verlet and Gear algorithms performed well, with Gear just being the quicker and more
accurate of thetwo. While on the basis of this information, one might be tempted to recommend the
Gear algorithm, the inherent instability in it's execution could cause problems for some simulations. In
particular, this experiment gives no indication on how the routines would perform under many-body
conditions, and any instability could well be amplified under these conditions.

From this| conclude that while the Verlet algorithm is slower and less accurate than Gear, it's 0.026%
level of accuracy is sufficiently good to warrant its use on the basis of stability, as stability implies that
the routine will perform consistently well under any circumstances.
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Appendix

FORTRAN simulation code as adapted from 'sho.f":

PROGRAM sho
c Finite difference sinmulation of a sinple harnonic
oscillator
c
¢ Program adapted by AN Jackson, 1/1996.
c
DOUBLE PRECI SION X, v, a, b, ener gy, w2, dt , t
REAL S, F
| NTEGER nst eps, net hod
| NTEGER*2 k
CALL start(x,v,a,b, energy, w2, dt, nsteps, t, net hod)
CALL out put (x, v)
k=32

DO WHI LE (k. eq. 32)
CALL CLOCK@ S)
DO i =1, nst eps
I F (nethod. eq. 1) CALL Eul er(x, v, w2, dt)
| F (nethod. eq.2) CALL Verlet(x,v,w2,dt)
| F (nethod. eq.3) CALL Gear(Xx,V,a,b,w2,dt)
t =t +dt
energy = 0.5d0*(wW2*x*x + v*v)
CALL out put (x, v)
ENDDO
CALL CLOCK@ F)
WRI TE(*,*) ‘That took ‘,(F-S),’ secs for *
+,nsteps,’ iterations.’
CALL GET_KEY@ k)
IF (k. EQ ICHAR('p’').OR k. EQ | CHAR(' P')) CALL
hprintgs
ENDDO
c
c Tidy up and exit:
c
WRI TE(21,*) ‘# Energy after ‘', NINT(t/dt),’
iterations:’
WRI TE(21,*) ‘# ', energy
CLOSE( UNI T=21)
CALL hfinish
WRI TE(6, *) ‘Energy = ‘, energy
STOP
END
c
c
c
SUBRQOUTI NE
start(x,v, a, b, energy, w2, dt, nsteps, t, met hod)
DOUBLE PRECI SION X, v, a, b, ener gy, w2, dt , t
REAL range
| NTEGER nst eps, net hod
net hod=1
WRI TE( 6, *) ' One- Di nensi onal Si npl e Harnoni c
Gscillator:’

VRI TE(6, *)’
I F (method. eq. 1) WRITE(6,*)’ [Eul er version]’
IF (method. eq.2) WRITE(6,*)’[Verlet version]’
| F (nethod. eq.3) WRITE(6, *)’' [ Gear version]’
VWRI TE(6, *)"
VR TE(6, *)' °
WRI TE(6, *)" Enter tine step (sec):’
READ( 5, *) dt
w2=1. 0d0
t=0. 0d0
x=1. 0d0
v=1. 0d0
a=- W2* x
b=0. 0d0
range=2.0
nst eps=NI NT( 100. 0/ dt)
energy = 0.5d0*(wW2*x*x + v*v)
c
¢ Gaphical initialisation
c
CALL hprepit
CALL hdefwi n(1,-range, range, -range, range,
+200, 450, 100, 400)

CALL hsetw n(1)
CALL hsetcol (7)
CALL hpl otax(’ position’,’ velocity’)
CALL hsetcol (7)

Qutput file initialisation

OPEN(UNI T=21, FILE="SHO QUT', STATUS="UNKNOW )
WRI TE(21,*) ‘# Qutput formsho.for’

I F (nethod. eq. 1) WRI TE(21, *)’ #[ Eul er version]’

I F (nethod. eq.2) WRITE(21, *)’ #[ Verl et version]’
I F (nethod. eq. 3) WRI TE(21, *)’ #[ Gear version]’
WRI TE(21, *) “# *

WRI TE(21,*) ‘# position,velocity’

RETURN

END

SUBRQUTI NE Eul er (x, v, w2, dt)
Eul er algorithm

DOUBLE PRECI SI ON x, v, w2, dt, a

a = -w2*x

X = X + v¥dt

vV = v + ardt

RETURN

END

SUBROUTI NE Ver | et (x, v, w2, dt)
Verlet algorithmin its’ velocity form
DOUBLE PRECI SI ON x, v, w2, dt, al, a2
al = -w2*x
X = x + v*dt + 0.5d0*al*dt*dt
a2 = -w2*x
v = v + 0.5d0*(a2+al)*dt
RETURN
END

SUBROUTI NE Gear (X, Vv, a, b, w2, dt)
Cear third-order PEC non-iterative algorithm
DOUBLE PRECI SION x, v, a, b, w2, dt, Da, | dt
Predict:
X = x + v*dt + 0.5d0*a*dt*dt +
.166666666d0* b* dt *dt * dt

v = v + a*dt + 0.5d0*b*dt*dt
a = a + b*dt
b=»>b
Eval uat e:
Da = 0.5d0*((-w2*x) - a)*dt*dt
Correct:
I dt =1. 0dO/ dt
X = x + 0.166666666d0* Da
v = v + 0.833333333d0*Da*| dt
a = a + 2.0d0*Da*ldt*Idt
b = b + 2.0d0*Da*ldt*Idt*Idt
RETURN
END

SUBROUTI NE out put ( x, v)
DOUBLE PRECI SI ON x, v
WRI TE( 21, 25) X,V
25  FORMAT(5F12. 6)
CALL hnovet o( REAL(x), REAL(V))
CALL hlineto(REAL(X), REAL(V))
RETURN
END
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