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One Dimensional Electrostatic
Plasma Simulation

An application of the particle-in-cell technique

This experiment concerned the use of two closely
related particle-in-cell simulation techniques, and their
comparison with eachother and with the theoretical
results for the behaviour of standing waves in the
plasma charge distribution.  The two techniques
compared were the cloud-in-cell (C-in-C) and nearest
grid point (NGP) particle distributions.  It was found
that, while the C-in-C was invariably the slower
method, it was generally the more accurate for the
extra time it required.  Landau damping of the
standing waves was observed and the damping
behaviour was compared with that predicted by
theory, with mixed results.

Andrew N Jackson                                                                                       22nd January 1996



Introduction
The solid, liquid and gaseous states of matter 
which occur at the surface of our planet are not 
typical of matter in the universe at large.  Most 
of the visible matter in the universe exists as 
plasma, whereas lightning and the aurora are the 
only natural manifestations of the plasma state 
on earth.In a plasma, the energy of the particles 
is so great that the electric forces which bind the 
atomic nucleus to its electrons are overcome.  Its 
behaviour is interesting in that while the waves 
that occur in it have much in common with 
waves in electrically conduction solids, it's bulk 
behaviour is best described using terminology 
and equations developed for fluids.  These 
unique characteristics have lead to plasmas 
being referred to as a fourth state of matter.

The sun, like most stars, is composed of plasma; 
in its core, the forces are so great that the atomic 
nuclei, dissociated from their electrons, can 
overcome their mutual repulsion and fuse 
together.  The attempt to reproduce on Earth the 
process of controlled thermonuclear fusion, 
coupled with the need to understand the 
behaviour of plasma in space, is at present the 
main impetus for research in plasma physics.

A plasma is an electrically neutral conducting 
gas, consisting of positive ions and electrons in a 
state of quasi-neutrality.  ie:

ne » Zni

where ne and ni are the electron and ion densities 
respectively and Z is the average ion charge 
number.  As any significant charge imbalance 
generates large space charge fields, quasi-
neutrality is maintained.

This experiment is concerned with the 
propagation of waves through the plasma, and 
specifically with the damping of these waves 
due to the thermal vibrations of the plasma's 
constituent particles (Landau damping).  Under 
these conditions we can ignore the bulk fluid 

behaviour and focus on the electrical conduction 
behaviour.  In other words, the behaviour of the 
plasma is determined by the aggregate electric 
fields generated by the charges, as opposed to 
binary collisions, as in the case of a fluid.

This means that if we neglect any relativistic 
effects, the plasma's general behaviour can be 
determined by solving Maxwell's and Newton's 
equations.  The basic simulation techniques do 
this directly, not by considering the full set of 
particles, but a relatively small number of  
'super-particles', each of which is equivalent to a 
vary large number of electrons or ions.
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Theory
• Basic Physical Plasma Theory

The plasma simulation has a particularly simple 
form in one dimension where magnetic fields 
are not generated.  This means that only electro-
static longitudinal waves occur, and that 
Maxwell's equations are reduced to Poisson's 
equation:

dE =  r 
dx  e0

where r is the charge density;

r = e(Zni - ne).

The electrons and ions are represented by super-
particles each corresponding to a large number 
of electrons or ions, fe and fi respectively.

The equations of motion for a super-particle are

dv = qE
dt  m

and
dx = v
dt

where q and m are the super-particle charge and 
mass respectively, corresponding to an electron 
or ion super-particle.

• Particle-In-Cell Simulation Theory

The first step in the particle-in-cell simulation is 
to break the plasma domain down into a finite 
difference mesh over which the electric field is 
calculated.  In this case we choose a series of it 
cells in x each of width Dx, so that the mesh 
points (cell-centres) are at

xi = (i+1/2)Dx              1 £ i £ it

and the cell boundaries at

xi+½ = (i+1)Dx              0 £ i £ it

where i is an integer.

If the charge difference in the cell is known the 
field at the boundaries follows from

Ei+½ = Ei-½ + ri Dx/e0

and the field at the cell centre

Ei = ½(Ei-½ + Ei+½).

The recurrence relation for E is started off by 
assuming the boundary condition:

E-½ = 0.

The inaccuracy of this assumption can be 
corrected by using the following condition on 
the potential drop over the system:

This is used to calculate a uniform field to be 
added to the charge determined component.

The charge density r is determined by assigning 
the super-particle charge on to the mesh using a 
weighting function di such that

where xj and qj are the position and charge of 
particle j of NT particles.  In practice two very 
simple weights are used:

 • 1:  Nearest Grid Point (NGP)

di(x) = 1 if |x-xi| < ½Dx
 0 otherwise

This assigns all the charge to the cell in which 
the particle lies.
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• 2:  Cloud-in-Cell (C-in-C)

di(x) = [1 - |x-xi| / Dx]       if |x-xi| < Dx
 0     otherwise

This assigns the charge over two cells as if the 
super-particle formed a uniform distribution of 
width Dx (see figure 2-1).

Given our finite difference form for the 
evaluation of the electric field over the grid, we 
now need a finite difference solution for the 
motion of the particles.  Due to the relatively 
large mass of the ions, we can assume then to be 
stationary, and so we only need to worry about 
the electrons.  Their motion can be calculated by 
the following leapfrog method:

vj
n+½ = vj

n+½ + qj/mj . Ej
n . Dt

xj
n+1 = xj

n + vj
n+½ . Dt

The field at the particle is calculated from the 
fields at the cell centres using the same 
weighting functions as for assigning the charge:

This means that, given a set of charge positions 
xj

n and velocities vj
n+½ from the proceeding time 

step, the calculation follows the sequence:

xj
n  »  ri

n  »  Ei
n  »  vj

n+½  »  xj
n+1

The time-step Dt is limited by the explicit nature 
of the algorithm, and the existance of wave 

solutions whose frequency is:

• Landau Damping

In order to observe Landau damping we must 
first modify the simulation to allow it to 
simulate simple plasma waves.  There are two 
main points to this modification:

 • The system is periodic, ie
 E-½ = Eit+½ 
with zero potential drop over the mesh.

 • Electron super-particles leaving one boundary 
of the mesh re-enter through the other, with no 
change in their velocity, ie:

 x   »   x - l if  x>l
x   »   x + l if  x<0

where l = (it × Dx), ie the total mesh length.

With these modifications the only further 
requirement is that the initial positions of the 
electron super-particles are defined such that 
they form a wave which can then be Landau 
damped.  In other words, while the ion density is 
uniform, the electron density has a sinusoidal 
perturbation superimposed on the uniform 
background.  The particles are given velocities 
at random according to a Gaussian distribution 
of variance kT/m, where T is an appropriate 
plasma temperature (~104 K), k is Boltzmann's 
constant and m is the mass of the electron.

This system will oscillate with a frequency:

Which is based on the natural plasma frequency 
above plus a correction for the effect of the 
thermal velocities of the particles.  The waves 
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Figure 2-1.
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are stationary if the temperature is zero, but 
progressive if warm.

For Landau damping to occur, the energy 
associated with the wave must accelerate 
particles whose random velocity is close to the 
wave phase velocity.  This resonance bleeds 
energy from the wave and into the general 
electron background.  For this to happen the 
spatial frequency of the waves klD must be 
greater than or equal to 0.2, where lD is the 
Debye length, defined as:

This damping effect is not easily measured; we 
must monitor the damping of the field energy in 
the specific Fourier mode, and the initial wave 
amplitude must be small.  If the amplitude is 
larger then particle trapping may occur, leading 
to the decay of the wave via breaking.

As mentioned above, the Landau damping effect 
is only significant for certain spatial frequencies 
of wave.  The degree of damping can be 
ascertained by fitting an exponential curve of the 
form 

E = E0 e-gt

to the results.  According to theory the 
relationship between the damping factor g and 
the wave number k should be:

And the experiment should confirm this.
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Method

One technique to minimise the amount of work 
a program will have to do is to use dimension-
less variables, and this is possible in this case, 
using the following relations:

T = wpt DT = wpDt
X = x/lD DX = Dx/lD

V = v/vt

lD wp = vt

So that the finite difference equations (cf page 3) 
become:

Ei+½ = Ei-½ + Ni

Vj
n+½ = Vj

n+½ + Ej
n . DT . DX
     SPperI

Xj
n+1 = Xj

n + Vj
n+½ . DT

Where Ni = the number of super-particles in 
cell i.

SPperI = the average number of 
super-particles in a cell.

This alter the initial conditions such that the 
values of X lie in the range 0 to l/lD multiplied 
by the number of periods we are describing, and 
the values of V are those of a random Gaussian 
distribution of unit variance.  

l/lD is the now the parameter that decided on 
the behaviour of the system.  Previously we said 
that the condition for Landau damping was:

 klD ‡ 0.2

As k = 2p/l this becomes:

l/lD £ 2p/0.2
£ 31.141

And so the range we are interested in 
investigating is l/lD = [0 - 35].

This dimensionless approach also means that 
our forlumae for expected results become:

t0 = 2p . [1 + 12p2 . (l/lD)-2]-½

and,

Weighting Function Implementation

We have said that when we assign the charges to 
the grid we can use one of two weights, 
the Nearest Grid Point and Cloud in Cell 
distributions.  These are implemented as 
follows:

• NGP : a particle at x goes into cell i such that:
i = INT(Xj/DX)

• CinC : a particle at x goes into two cells:
Let i = INT(Xj/DX + ½)
so  i - Xj/DX +0.5

goes into cell i,
and 1 - (i - Xj/DX +0.5)

goes into cell i+1.

Fourier Mode Analysis

The calculation of the system energy is done by 
analysing the Fourier mode of vibration.  The 
formula required for this is as follows:

ak = 1/(2pIT) åi Ei cos[2p.i.k/IT]

bk = 1/(2pIT) åi Ei sin[2p.i.k/IT]

Energy = Ö(ak
2 + bk

2)
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General Form Of Calculation Routine

The finite element calculation was implemented 
using the following general structure:

Initialise electric field variables:
E-½ = 0, Eres = 0.

•
Loop over all mesh elements(i):

Ei = E-½

E-½ = E-½ - Ni

Ei = ½(Ei + E-½)
Eres = Eres + Ei

Ni = -SPperI

End loop.
•

Eres = Eres/it
DXoSPperI = DX/SPperI

len = DX × it

•
Loop over all particles (j):

Use weighting function to find electric field Ex

Vj = Vj - DT × DXoSPperI × (Ex - Eres)
Xj = Xj + DT × Vj

IF Xj > len THEN Xj = Xj - len
IF Xj < len THEN Xj = Xj + len

Use weighting function to find relevant cell numbers and 

full up Ni accordingly.

End loop.
•

Calculate new system energy.

This is repeated as many time as is requested by 
the user, in terms of real time converted into no's 
of iterations.

General I/O Requirements:

As well as the actual calculation routines, a 
number of input/output routines were also 
written.  The actual details of these are not 
important but it should be said that they allow 
the entry of the important parameters of the 
calculation of presented output at various stages 
during the simulation.  The output was in the 
form of various graphs:

 • The resultant electric field,
 • A phase space plot of the particles,

 • A frequency plot of particle velocity, and,
 • A plot of system energy against time.

All this could also be output to a file for 
rendering in a desk-top-publishing program via 
a data plotter (GNUPlot).

All important code is given in the appendix at 
the end of this report.

Method Of Analysis

The analysis of the program breaks down into 
four parts:

 1 • General plasma behaviour:
Using the NGP program, analyse the general 
behaviour of the plasma, by obvserving the 
changes in the electric field as time passes.

2 • Comparison of weighting functions:
Collect a set of results from both the NGP and 
the CinC program for a range on accuracies.  In 
other words see how altering the number of 
particles used for the simulation alters the result 
and try to determine which routine is the best.

3 • Comparison of experimental results to 
theoretical predictions:
Using the best program, collect data on the 
damping and period of the oscillations for a 
range of l/lD. Then compare these results to 
those predicted by theory.

4 • Effect of wave amplitude:
Alter the initial conditions so that results are 
obtained for a whole range of amplitudes (given 
as a fraction of the average number of particles 
in a cell).  Use velocity frequency plot to 
illustrate these results.
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Results

1 • General plasma behaviour:
The sequence of figures from 4-1 to 4-4 
illustrate the general chronological evolution of 
the plasma's electric field.  Figure 4-5 shows the 
change in the system's energy over time, and the 
points on that graph which correspond to figures 
4-1 to 4-4.  It is clear from this that the second 
peak on this graph is lower than the first, and so 
Landau damping must be occuring.  This 
damped oscillation trend continues at times 
beyond those shown in fig. 4-5.

All results were taken at l/lD = 15.0.

• Page 7 •

- One Dimensional Electro-Static Plasma Simulation.

Figure 4-2
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Figure 4-3
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Figure 4-5
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Figure 4-4
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2 • Comparison of weighting functions:
For both my NGP and my C-in-C programs, you 
were allowed to use up to 100,000 particles for 
the simulation, and to select what fraction (f) of 
this number to use for any particular simulation.

While results were taken for the whole range of 
f (0.0-1.0), the results of the comparison can be 
clearly seen from the results at f = 0.1, 0.2, 0.4 
and 0.6.  Figures 4-6a,7a,8a and 9a show energy 
against time plots for the NGP method, and 
figures 4-6b,7b,8b and 9b show the C-in-C 
results.

All results were taken at l/lD = 15.0.
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Figure 4-7a : NGP at f=0.2.
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Figure 4-6a : NGP at f=0.1.
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Figure 4-6b : C-in-C at f=0.1.
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Figure 4-7b : C-in-C at f=0.2.
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It can be seen from these results that the Nearest 
Grid Point method gives rise to a much noisier 
set of results than Cloud-in-Cell.  It is also clear 
than we only need 60% of the 100,000 particles 
available in order to get a good set of results.

While Cloud-in-Cell is clearly more accurate, 
there is no point in using a method which is 
twice as accurate if it is four times slower to 
execute.  Table 4-1 shows the timings taken for 
the two methods for a range of values of f.

While I cannot say exactly how much more 
accurate the Cloud-in-Cell method is from my 
results, I can say that I believe it to be 
sufficiently better to warrant the extra ~45% of 
run-time it requires.
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Figure 4-8a : NGP at f=0.4.
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Figure 4-9a : NGP at f=0.6.
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Figure 4-8b : C-in-C at f=0.4.
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Figure 4-9b : C-in-C at f=0.6.
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Table 4-1

f NGP time C-in-C time % slower

0.1 11.2 9.2 21.7

0.2 16.3 12.4 31.5

0.3 26.6 19.3 37.8

0.4 59.8 42.6 40.4

0.5 112.6 79.2 42.2



3 • Comparison of experimental results to 
theoretical predictions:
With the Cloud-in-Cell code set up to use 60% 
of the 100,00 particles, it is possible to 
investigate the behaviour of the system over a 
range of l/lD and compare the results with 
theory.  As the described earlier, the Landau 
condition for damping is that l/lD is below 
about 31.4, so for this analysis  the range from 
5.0 to 40.0 was investigated in steps of 5.0.

Figure 4-10 shows the variation of the period of 
oscillation with l/lD and compares it to the 
result predicted by theory.  This shows a clear 
agreement of theory with experiment in the case, 
with little or no deviation overall.

Figure 4-11 shows the results for the variation of 
the damping factor of oscillations (g) with l/lD 
and gives a comparison to the theoretical 
prediction.  Here it can be seen that while the 
general form of the results fits well with those of 
the theory, the curves they trace do not 
superimpose due to the experimental results 
forming a somewhat taller version of the 
theoretical predictions.  The peak of the curve is 
also shifted to the low l/lD end.  This means 
that the experiment generally overestimates the 
damping effect.  The simulation makes a number 
of assumptions (such as the stationary positive 
ion background), and I cannot identify a 
particular reason for this disagreement with 
theory.  However, but I do believe the 
disagreement is due to a rash assumption in the 
theory rather than a mistake in the 
computational implementation.
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Figure 4-10
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4 • Effect of wave amplitude:
Throughout the experiment, the amplitude of the 
initial sinusiodal charge distribution has been set 
to a value that was known to work, ie at 5% of 
the average number of particle in a cell (so that 
the distribution maxima contain 105% of the 
average no. of particles in a cell and the minima 
95%).  In this last section the effects of a range 
of amplitudes are investigated.

Figure 4-12 shows the velocity frequency plots 
of the electron super-particles in the plasma after 
one half period of oscillations (ie at the first 
peak in the energy versus time plot) for 
amplitudes of 5%, 25%, 50%, 75% and 90% of 
the average no. of particles per cell.  The 
thinnest, tallest graph is at 5% where the 
distribution is Gaussian, ie the initial thermal 
distribution has not been altered greatly by the 
wave motion in the system.  As the amplitude is 
increased this curve flattens out, as a large no. of 
the particles are now being controlled more by 
the wave energy than the inital conditions.

While this effect is interesting, we can learn 
more by investigation the chronological 
development of the wave at a given high 
amplitude.  The next set of figures (4-13 to 4-21) 
show the varation of the frequency plot with 
time for a system with 50% initial wave 
amplitude.
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Figure 4-12
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Figure 4-13

0

500

1000

1500

2000

2500

-5 -3 -1 1 3 5

F
re

qu
en

cy

Velocity

t=0.00

Figure 4-14
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Figure 4-16
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What I believe to be happening is this:  The 
standing wave of charge in the plasma can be 
thought of as two waves moving in opposite 
directions which are colliding.  In the case of 
string waves, large numbers of the particle are 
forced to move with the wave in either the 
positive or negative x direction.  This means 
particle are drained from the surrounding 
velocities and forced into the wave velocity.  
This causes the particles to act like a set of 
oscillators, sending spikes of 'popular' velocities 
through the velocity frequency plot.  These 
oscillations overlap to casue the frequency plot 
to appear as shown above (esp. figure 4-21).
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Figure 4-17
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Figure 4-19
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Figure 4-21
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Conclusions

While the model studied here performs well 
overall, it's lack of agreement with the predicted 
results for the Landau damping effect show that 
there is some room for improvement.  In my 
opinion the theory behind the simulation could 
be improved by perhaps taking more account of 
the movement of the heavy +ve ions, and the 
actual simulation may benefit from using a 
better algorithm than the leap-frog method, 
which is a rather poor in comparison to the 
others available.  This might allow more 
particles and cells to be used more accuratle 
without demanding so much more processor 
time (ie routines able to cope with a larger time-
step).
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Appendix - part 1 - NGP core code:
c
c Mai n cal cul at i on pr ocedur e:

c
      subr out i ne cal cchange
      DI MENSI ON 
E( 0: 2062) , N( 0: 2062) , V( 206200) , X( 206200) , cel l ( 206200)
      DI MENSI ON EvT( - 1: 204800)
      COMMON / PI CI NT/  cel l , i t , NT, st ep, f ul l , f i l e, nps
      COMMON / PI CREL/  
E, N, V, X, DX, DT, SPper I , T, Ampl , Tot Ti me
      COMMON / PI CNRG/  Et ot , EvT, Er es, Emax, Emi n
      REAL 

E, N, V, X, DX, DT, T, SPper I , Ehal f , Er es, Et ot , EvT, Num
      REAL DXoSPper I , l en
      I NTEGER i t , i , j , NT
      l en=DX* i t
      DXoSPPer I =DX/ SPper I
      Ehal f =0. 0
      Er es=0. 0
      DO i =1, i t
       Num=N( i )
       E( i ) =Ehal f

       Ehal f =Ehal f - Num
       E( i ) =0. 5* ( E( i ) +Ehal f )
       Er es=Er es+E( i )
       N( i ) =- SPper I
      ENDDO
      Er es=Er es/ i t
      DO j =1, NT
       i =MI N0( I NT( x( j ) / DX) +1, I T)
       v( j ) =v( j ) - DT* DXoSPper I * ( E( i ) - Er es)
       x( j ) =x( j ) +DT* v( j )

       I F ( x( j ) . GT. l en)  x( j ) =x( j ) - l en
       I F ( x( j ) . LT. 0. 0)  x( j ) =x( j ) +l en
       i =MI N0( I NT( x( j ) / DX) +1, I T)
       N( i ) =N( i ) +1
      ENDDO
      r et ur n
      end

Appendix - part 2 - C-in-C core code:
c
c Mai n cal cul at i on pr ocedur e:
c
      subr out i ne cal cchange
      DI MENSI ON 
E( 0: 2063) , N( 0: 2063) , V( 206200) , X( 206200) , cel l ( 206200)
      DI MENSI ON EvT( - 1: 204800)

      COMMON / PI CI NT/  cel l , i t , NT, st ep, f ul l , f i l e, nps
      COMMON / PI CREL/  
E, N, V, X, DX, DT, SPper I , T, Ampl , Tot Ti me
      COMMON / PI CNRG/  Et ot , EvT, Er es, Emax, Emi n
      REAL 
E, N, V, X, DX, DT, T, SPper I , Ehal f , Er es, Et ot , EvT, Num
      REAL DXoSPper I , l en, Ex, f r acA, f r acB
      I NTEGER i t , i , j , NT
      l en=DX* i t
      DXoSPPer I =DX/ SPper I

      Ehal f =0. 0
      Er es=0. 0
      DO i =1, i t
       Num=N( i )
       E( i ) =Ehal f
       Ehal f =Ehal f - Num
       E( i ) =0. 5* ( E( i ) +Ehal f )
       Er es=Er es+E( i )
       N( i ) =- SPper I
      ENDDO

      N( 0) =0. 0
      N( i t +1) =0. 0
      Er es=Er es/ i t
c Add cl oud- i n- cel l  boundar y cont i nui t y.
      E( 0) =E( i t )
      E( i t +1) =E( 1)

      DO j =1, NT
       i =I NT( ( x( j ) / DX) +0. 5)
       f r acA=i - ( x( j ) / DX) +0. 5
       f r acB=1. 0- f r acA
       Ex=E( i ) * f r acA+E( i +1) * f r acB
       v( j ) =v( j ) - DT* DXoSPper I * ( Ex- Er es)
       x( j ) =x( j ) +DT* v( j )

       I F ( x( j ) . GT. l en)  x( j ) =x( j ) - l en
       I F ( x( j ) . LT. 0. 0)  x( j ) =x( j ) +l en
       i =I NT( ( x( j ) / DX) +0. 5)
       f r acA=i - ( x( j ) / DX) +0. 5
       f r acB=1. 0- f r acA
       N( i ) =N( i ) +f r acA
       N( i +1) =N( i +1) +f r acB
      ENDDO
c Cor r ect  f or  of f - boundar y bi ns ( c i c) .
      N( i t ) =N( i t ) +N( 0)

      N( 1) =N( 1) +N( i t +1)
      r et ur n
      end

Appendix - part 3 - General code:
c
c Mode energy calculation:
c
      subroutine Energycalc
      DIMENSION 
E(0:2063),N(0:2063),V(206200),X(206200),cell(206200)
      DIMENSION 
EvT(-1:204800),MaxEvT(0:2048),MinEvT(0:2048)
      COMMON /PICINT/ cell,it,NT,step,full,file,nps
      COMMON /PICREL/ 
E,N,V,X,DX,DT,SPperI,T,Ampl,TotTime
      COMMON /PICNRG/ Etot,EvT,Eres,Emax,Emin
      COMMON /PICMAX/ 
MaxEvT,MinEvT,MaxPlot,NoMax,NoMin,Mflag
      REAL E,N,V,X,DX,DT,T,SPperI,EvT,Etot,Eres,a,b
      INTEGER cell,it,step,i,nps,file,E1,E2
      INTEGER MaxEvT,MinEvT,MaxPlot,NoMax,NoMin,Mflag
c Loop over electric field to find energy of fourier 
mode:
      a=0.0
      b=0.0
      DO i=1,it
       a=a+E(i)*COS(6.283185307*REAL(i*nps)/REAL(it))
       a=a+E(i)*SIN(6.283185307*REAL(i*nps)/REAL(it))
      ENDDO
      a=a/(6.283185307*REAL(it))
      b=b/(6.283185307*REAL(it))
      EvT(INT(T))=SQRT(a*a+b*b)
      E1=EvT(INT(T)-1)
      E2=EvT(INT(T))
c Check for max:
      IF (Mflag.EQ.-1 .AND. E1.GT.E2) THEN
       IF (((INT(T)-1)-MaxEvT(NoMax))*DT.GT.2.0) THEN
        NoMax=NoMax+1
        MaxEvT(NoMax)=INT(T)-1
        Mflag=1
       ENDIF
      ENDIF
c Check for min:
      IF (Mflag.EQ.1 .AND. E1.LT.E2) THEN
       IF (((INT(T)-1)-MinEvT(NoMin))*DT.GT.2.0) THEN
        NoMin=NoMin+1
        MinEvT(NoMin)=INT(T)-1
        Mflag=-1
       ENDIF
      ENDIF
      return
      end 
c
c Initialisation of all parameters
c
      subroutine initialise
      DIMENSION 
E(0:2063),N(0:2063),V(206200),X(206200),cell(206200)
      DIMENSION 
EvT(-1:204800),MaxEvT(0:2048),MinEvT(0:2048)
      COMMON /PICINT/ cell,it,NT,step,full,file,nps
      COMMON /PICREL/ 
E,N,V,X,DX,DT,SPperI,T,Ampl,TotTime
      COMMON /PICNRG/ Etot,EvT,Eres,Emax,Emin
      COMMON /PICMAX/ 
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MaxEvT,MinEvT,MaxPlot,NoMax,NoMin,Mflag
      REAL 
E,N,V,X,DX,DT,T,SPperI,xcen,SPforI,Eres,Ehalf,EvT
      REAL TotTime,Tlen,Tstep,Percent
      INTEGER 
cell,it,nps,i,j,Ampl,NT,idum,step,full,file
      INTEGER MaxEvT,MinEvT,MaxPlot,NoMax,NoMin,Mflag
      INTEGER*2 k
      CALL TEXT_MODE@
c Ask user for specific configuration:
      WRITE(*,*) ‘One Dimensional Plasma Wave 
Simulation:’
      WRITE(*,*) 
‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘[Cloud-in-cell implementation.]’
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘Enter time between plots:’
      READ(*,*) Tstep
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘Enter total time of simulation:’
      READ(*,*) TotTime
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘Enter total length of system:’
      READ(*,*) Tlen
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘Enter fraction of particles to use:’
      READ(*,*) Percent
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘File? (0 = no output)’
      WRITE(*,*) ‘      (1 = phase space/frequency 
plot)’
      WRITE(*,*) ‘      (2 = electric field plot)’
      WRITE(*,*) ‘      (3 = energy v time plot)’
      READ(*,*) file
      WRITE(*,*) ‘ ‘
 666  WRITE(*,*) ‘Phase space plot? (y/n)’
      full=-1
      CALL GET_KEY@(k)
      IF (k.EQ.ICHAR(’y’) .OR. k.EQ.ICHAR(’Y’)) full=1
      IF (k.EQ.ICHAR(’n’) .OR. k.EQ.ICHAR(’N’)) full=0
      IF (full.EQ.-1) goto 666
      WRITE(*,*) ‘ ‘
 667  WRITE(*,*) ‘Plot spline throughout? (y/n)’
      MaxPlot=-1
      CALL GET_KEY@(k)
      IF (k.EQ.ICHAR(’y’) .OR. k.EQ.ICHAR(’Y’)) 
MaxPlot=1
      IF (k.EQ.ICHAR(’n’) .OR. k.EQ.ICHAR(’N’)) 
MaxPlot=0
      IF (MaxPlot.EQ.-1) goto 667
c
      WRITE(*,*) ‘ ‘
      WRITE(*,*) ‘Initialising; please wait...’
      idum=-1
      nps=4
      NT=(102400)*Percent
      it=(NT/100.0)*Percent
      SPperI=NT/it
      Ampl=SPperI*0.05
      DX=Tlen*nps/it
      DT=DX/4.0
      IF (DT.GT.0.2) DT=0.2
      step=Tstep/DT
      NT=0
      T=0
      NoMin=0
      NoMax=0
      Mflag=-1
      EvT(-1)=0.0
c Define sinusoidal electron arrangement of nps periods, 
for N:
      DO i=1,it
       xcen=(i-0.5)*DX
       SPforI=Ampl*sin(6.283185307*nps*xcen/(it*DX))
       N(i)=-SPperI
       DO j=1,NINT(SPperI+SPforI)
        NT=NT+1
        x(NT)=(i-RAN1(idum))*DX
        v(NT)=GASDEV(idum)
       ENDDO
      ENDDO
      N(0)=0.0
      N(it+1)=0.0
c Calculate value of cic charge array (N)

      DO j=1,NT
       i=INT((x(j)/DX)+0.5)
       fracA=i-(x(j)/DX)+0.5
       fracB=1.0-fracA
       N(i)=N(i)+fracA
       N(i+1)=N(i+1)+fracB
      ENDDO
      N(it)=N(it)+N(0)
      N(1)=N(1)+N(it+1)
c Calculate initial E field:
      Ehalf=0.0
      Eres=0.0
      DO i=1,it
       Num=N(i)
       E(i)=Ehalf
       Ehalf=Ehalf-Num
       E(i)=0.5*(E(i)+Ehalf)
       Eres=Eres+E(i)
      ENDDO
      Eres=Eres/it
      E(0)=E(it)
      E(it+1)=E(1)
c Scan for electric field range:
      Emin=E(1)
      Emax=Emin
      DO i=1,it
       IF (E(i).LT.Emin) Emin=E(i)
       IF (E(i).GT.Emax) Emax=E(i)
      ENDDO
      Emin=Emin-Eres
      Emax=Emax-Eres
      return
      end
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