Demonstration Of The III-Conditione(ﬂ\

Nature Of Hilbert Matricies

An application of numerical analysis techniques

In this assignment | used LU decomposition to solve
the matrix equation H « X = B where H corresponds to
a Hilbert matrix of order n, and all elements of B are
unity, and compare these results with those given by
more accurate integer methods. | found that while the
error from the LU decomposition increase
exponentially with n, the routine still coped very well
with quite extremely ill-conditioned matrices over the
range of n used (2 to 10). However, for
characteristically ill-conditioned matrix systems, one
should generally endeavour to find analytical solutions
as opposed to utlising numerical methods when
accuracy is of primary importance.

Andrew N Jackson

17th February 1996
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I ntroduction

As acomputational experiment in the application of numerical methods, this assignment concerns the
demonstration of the ill-conditioned nature of Hilbert matricies. Thisaim is effected by solving a
matrix equation of the form:

HeX=B

for arange of order of Hilbert matrix (where all elements of B are unity). The resulting values
contained within X can then be compared with those computed from formulae (via more accurate

integer methods).

As a consequence of the above investigation, this assignment also serves as an introduction to the
numerical solution of matricies, in this case by LU decomposition.
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Theory
For aparticular order, n, the Hilbert matrix is defined such that:

a = 1 (1
i+j-1

For example, the 3rd order Hilber matrix is defined as:

11
123
111
2 3 4
111
3 45

As mentioned before, in this experiment LU decomposition was used to solve the matrix equation:
HeX =B (2)

ie LU decomposition calculates the inverse of the matrix H and uses this inverted form to solve for X
(where the elements of B are dl unity,). The theory behind LU decomposition is as follows:

It is proposed that an arbitrary matrix A istransformed into a product of two matricies:

LeU=A )
where L isalower triangular matrix and U isan upper triangular matrix. For the caseof a3 x 3
matrix, equation (3) has this general form:

a), 0 0 bll b12 b13 a11 a12 a13
a, a, 00 b, b, J9%, &, 8y (4)
Ay 8y a0 0 b % %2 %

This means that the set of linear equation we wish to solve for (equation (2)) can be expressed as.
(LeU)yeX=Le(U*X)=B

So that we can solve for X by first solving for Y such that

LeY=B 5
and then solving
UeX=B (6)

The advantage of breaking up one linear set into two successive ones is that the solution of atriangular
set isquitetrivial. Equation (5) can be solved by forward substitution, and equation (6) by back
substitution, no other manipulation is required.

The question that remainsis how to calculate the a;; and bj; coefficients of the LU decomposition so
that they correspond to the a; coefficients of the original matrix (see equation (4)). While the full
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theory can be found in Numerical Recipies, it isworth noting here that the diagonal terms that appear
inthe L and U matricies mean that the system is over specified, and that we cannot solve for all the
coefficientsin equation (4). It can be shown that we are allowed to assume all the a; terms are equal to
unity, so that theL and U matrices can be expressed in the combined form:

b,, b, b

11 12 13

a'21 b22 b23

a'31 a'32 b33

where all the a and b coefficients are straightforward to calcul ate.

The ill-conditioned nature of the Hilbert matricies is demonstrated by the calculation of Dx, (for arange
of n):

(")

where n isthe order of the Hilbert matrix being examined and‘x; corresponds to the exact solution as
computed by integer methods.. It has been shown in the lecture notes that the value of the determinant
of aHilbert matrix becomes closer to zero as n increases, and so we should find that the error in our
calculation also increases with n.

While we have been given the 'integer methods mentioned above, due to time restrictions | shall not
write ageneral program to solve for any order of n, but instead only for the required range of n=2to
10. Thisrestriction allows me to use values for*x; in my program which have been calculated by
Mapel, and avoids the need to implement the general integer method solution.
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Method

The structure of the program which | assembled for this assignment can be broken down into three
main sections:

1 « Definition of matricies

Before any calculation can be attempted, we need to define the matrices we wish to solve. This breaks
down into three steps; given an order, n:

- Define the Hilbert matrix according to equation (1).
- Define the correct solution matrix from data transferred from Mapel.
- Define the unity matrix B.

2 » Decomposition of matrix and solving for X

The routines for this section were taken from Numerical Recipes, and work broadly as defined in the
theory chapter above. The only difference being that this routine uses pivoting to help stabilise the
solution, and so an array is required to keep count of the pivoting moves the program makes.

So, in order to solve the matrix equation my code:
- Calls the decomposition routine LUDCMP, passing the required parameters, and then

- Calls the back/forward substitution routine LUDK SB, transforming the unity matrix B into the
solution matrix X.

3« Calculation of the deviation from the real solution

This section of the code simply compares the calcul ated solution to that from the more accurate integer
methods, using equation (7) above. By doing thisfor the range of n from 2 to 10, we can demonstrate
the effect of ill conditioning in the solution of matrices by LU decomposition.

The full code for the above scheme isincluded in the appendix at the back of this report.
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Results

The results from my program are summarised in table 1 and figure 1 below:

Order (n) Error
2.0 3.1402e-16
3.0 1.5922e-15
4.0 1.5305e-13
5.0 5.9349e-13
6.0 9.1771e-11
7.0 2.7273e-09
8.0 1.3587e-08
9.0 2.6362e-06

10.0 1.5018e-04

Table 1: Error against order.

Error
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0.00012 4
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Figure 1: Error against order.

The plot in figure 1 really doesn't do the data justice, and so figure 2 below shows a plot of logio error

against n.
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Figure 1: Logio error against order.
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The points of figure 2 are the results from my program, and the lineis aline of best fit through the data,
such that:

logwo Dxn = 1.4655n - 18.928
or:
DXn — 10(1.4655 n - 18.928)
Thus, for a0.1% error, we need:
n = (logw 0.001 + 18.928)/1.4655
= 10.87

ie we need an order between n = 10.0 and 11.0 to get a 0.1% error from the LU decomposition.

It should be noted that an order 10 Hilbert matrix corresponds to:
det |Hio| ~ 1.0 x 10°%8,
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Conclusion

While the inability of the LU decomposition method to cope with Hilbert matrices increasesin avery
rapid exponential trend, it should be noted that even with det [H| ~ 10 the routine still did not
introduce error of the order of 1%.

In other words, while we should find alternative methods to solve characteristically ill-conditioned
matrices (like solving the higher order Hilbert matrices by the integer methods mentioned earlier), the
LU decomposition method will, in general, be very reliable for systems where ill-conditioning is not an
integral characteristic, as well asfor systems of a moderate degree of ill-conditioning (Hilbert up to
order ~10). Of course, the particular choice of method depends on the degree of accuracy that is
required from the solution.

If one must apply LU decomposition to very ill-conditioned matricies, it would be possible to use the
iterative form of LU decomposition, where the result is run backwards through the cal culation and
compared with the initial equation in order to improve the algorithm's accuracy.

Note:
Wherever | refer to Numerical Recipes, | am referring to:

- Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1994, Numerical Recipesin
FORTRAN, 2nd Ed. (Cambridge University Press), Chapter 2.
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Appendix: FORTRAN code implementation of the assignment.

program Hi | bert
¢ Conputes the solutions to the matrix equation HX=B
where His the Hilbert
¢ matrix of order n, and all elenents of B are unity.
An LU deconposition
¢ nethod is enployed, using routines from Nunerical
Reci pi es
c
¢ The ill-conditioned nature of Hilbert matricies is
denonstrated by
¢ calculating the difference between the LUdeconp
results with the results
¢ known from formul ae
c
¢ Andrew Jackson, 1996
| NTEGER np
PARANVETER (np=10)
DOUBLE PRECI SI ON d, Dx, H(np, np), Sol n(np), B(np)
I NTEGER n, | ndex( np)
c Display program header and get a value for n:
CALL progheader (n)
c Define all the required matricies for the analysis
CALL defineH(H, n, np)
CALL defi neSol n(Sol n, n, np)
CALL out put matri x1D( Sol n, n, np)
CALL defineunity(B, n, np)
¢ Deconpose and sol ve the HX=B equation
CALL LUDCMP(H, n, np, | ndex, d)
CALL LUDKSB(H, n, np, | ndex, B)
CALL out putmatri x1D(B, n, np)
¢ Anal yse error
CALL errcal c(n, np, B, Sol n, Dx)
c Gve results:
WRI TE(*,*) ‘Error between the methods = ‘, Dx
stop
end

c Calculate error between 1D matricies

SUBRQUTI NE errcal c(n, np, Est, True, err)
| NTEGER n, np,

DOUBLE PRECI SI ON

Est (np), True(np),err, diffsumtruesum

di f f sum=0. 0dO

truesum=0. 0d0

DO i=1,n

di ffsumedi ffsumr(Est(i)-True(i))**2
truesumrt ruesumtTrue(i)**2

ENDDO

err=dsqrt (diffsunm truesumn

return

end

c Define the solution matrix for order n

SUBRQUTI NE def i neSol n( Sol n, n, np)
| NTEGER n, np

DOUBLE PRECI SI ON Sol n( np)

c currently using results from Mapel until the fornul ea
are inplenented

IF (n.EQ 1) THEN

Sol n(1) =1. 0d0

ENDI F

IF (n.EQ2) THEN

Sol n(1) =-2. 0d0

Sol n(2) =6. 0d0

ENDI F
IF (n.EQ3) THEN

Sol n(1) =3. 0d0

Sol n(2) =-24. 0d0

Sol n( 3) =30. 0d0
ENDI F
IF (n.EQ4) THEN

Sol n(1) =- 4. 0d0

Sol n(2) =60. 0d0

Sol n( 3) =-180. 0d0

Sol n(4) =140. 0dO
ENDI F
IF (n.EQ5) THEN

Sol n(1) =5. 0d0
Sol n(2) =-120. 0d0
Sol n(3) =630. 0d0
Sol n(4)=-1120. 0d0
Sol n(5)=630. 0d0
ENDI F
IF (n. EQ 6) THEN
Sol n(1) =-6. 0d0
Sol n(2)=210. 0d0
Sol n(3) =-1680. 0d0
Sol n(4) =5040. 0d0
Sol n(5) =-6300. 0d0
Sol n(6) =-2772. 0d0
ENDI F
IF (n.EQ7) THEN
Sol n(1) =7. 0d0
Sol n(2) =-336. 0d0
Sol n(3) =3780. 0d0
Sol n(4) =- 16800. 0d0
Sol n(5) =34650. 0d0
Sol n( 6) =-33264. 0d0
Sol n(7)=12012. 0d0
ENDI F
IF (n. EQ 8) THEN
Sol n(1) =- 8. 0d0
Sol n(2) =504. 0d0
Sol n(3) =- 7560. 0d0
Sol n(4) =46200. 0d0
Sol n(5) =-138600. 0d0
Sol n(6) =216216. 0d0
Sol n(7) =-168168. 0d0
Sol n(8)=51480. 0d0
ENDI F
IF (n. EQ9) THEN
Sol n(1)=9. 0d0
Sol n(2) =-720. 0d0
Sol n(3)=13860. 0d0
Sol n(4) =-110880. 0d0
Sol n(5) =450450. 0d0
Sol n( 6) =-1009008. 0d0
Sol n(7)=1261260. 0d0
Sol n(8) =-823680. 0d0
Sol n(9)=218790. 0d0
ENDI F
IF (n. EQ 10) THEN
Sol n(1) =-10. 0d0
Sol n(2)=990. 0d0
Sol n(3) =-23760. 0d0
Sol n(4) =240240. 0d0
Sol n(5) =-1261260. 0d0
Sol n( 6) =3783780. 0d0
Sol n(7)=-6726720. 0d0
Sol n(8)=7001280. 0d0
Sol n(9) =-3939220. 0d0
Sol n(10) =923780. 0d0
ENDI F
return
end

Def

o

ne a 1D unity matrix

SUBROUTI NE defi neuni ty(A, n, np)
I NTEGER n, np,

DOUBLE PRECI SI ON A(np)
DOi=1,n

A(i)=1.0d0

ENDDO

return

end

Define a Hilbert matrix of order n

o

SUBROUTI NE defi neH( H, n, np)
I NTEGER n, np,i,j
DOUBLE PRECI SI ON H(np, np)
¢ Go through el enent applying a(ij)=1/(i+j-1) formula
DOi=1,n
DO j=1,n
H(i,j)=1.0d0/ (i+j-1.0d0)
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ENDDO
ENDDO
return
end
c
c Qutput a 2D nmatrix
c
SUBRQUTI NE out put mat ri x2D( A, n, np)
INTEGER n, np,i,j
I NTEGER* 2 k
DOUBLE PRECI SI ON A(np, np)
DO i=1,n
DO j=1,n
WRI TE(*, *) A(i,j)
ENDDO
VR TE(*, *) *
ENDDO
VR TE(*, *)
VR TE(*, *)
VR TE(*, *)
CALL GET_KEY@k)
return
end

‘Press any key...’

c
c Qutput a 1D nmatrix
c
SUBRQUTI NE out put matri x1D( A, n, np)
| NTEGER n, np,
I NTEGER* 2 k
DOUBLE PRECI SI ON A(np)
DOi=1,n
WRI TE(*, *) A(i)
ENDDO
VR TE(*, *)
VR TE(*, *)
VR TE(*, *)
CALL GET_KEY@kK)
return
end

‘Press any key. ..

c
c Present user with program header and ask for order of
matrix to solve

SUBRQUTI NE pr ogheader ( n)

| NTEGER n

VR TE(*, *)

WRI TE(*,*) ‘HX=B matrix equation solver, where H
is a Hlbert

VR TE(*, *)

VR TE(*, *)

VR TE(*, *)

VR TE(*, *)

READ(*, *) n

return

end

‘matrix of order n and Bis unity.

‘Enter order of matrix to solve

c
¢ The follow ng routines are copied from Nunerica
Reci pi es. 2nd Ed
c

SUBRQOUTI NE LUDCMP( a, n, np, i ndx, d)
¢ Gven an NxN matrix (a), this routine replaces it by
the LU deconposition

¢ of a rowni se pernutation of itself

c

c I nput : a - the matrix

c n - “active’ dinension of the
matrix, a

c np - physical dinension of the
matrix, a

c

c Qut put : a - the matrix in LU form[two
matricies stored as one]

c indx - an output vector used to record
the row pernutation

c as effected by partical

pi voti ng.

c d - output as +/-1 depending on
whet her the nunber of

c row i nterchanges was even or

odd, respectively.

C
C

This routine is used in conbination with LUBKSB to

sol ve |inear equations

C
C

c

or to invert a matrix

I NTEGER n, np, i ndx(n), NMAX
DOUBLE PRECI SI ON d, a( np, np), TI NY
PARAMVETER ( NMAX=500, TI NY=1. 0D- 20)
INTEGER i, inmax,j,k
DOUBLE PRECI SI ON aamex, dum sum vv( NVAX)
vv stores the inmplicit scaling of each row - |argest

coeff of each row

¢ normalised to unity
d=1. 0d0
c loop over rows to get inplicit scaling information
do i=1,n
aamax=0. 0d0
do j=1,n
if(dabs(a(i,j)).gt.aamax)aamax=dabs(a(i,j))
end do
i f (aamax. eq. 0. 0d0) pause ‘ LUDCMP: Singul ar matrix’
c save the scaling
vv(i)=1.0d0/ aamax
end do
¢ loop over colums - Crout’s nethod
do j=1,n
doi=1,j-1
sumFa(i,j)
do k=1,i-1
sunrsum a(i, k) *a(k,j)
end do
a(i,j)=sum
end do
c initialise the search for the |argest pivot elenent
aamax=0. 0d0
do i=j,n
sumFa(i,j)
do k=1,j-1
sunrsum a(i, k) *a(k,j)
end do
a(i,j)=sum
c figure of nerit for the pivot
dumevv (i) *dabs(sum
c is it better than the best so far?
i f(dum ge. aamax)t hen
i max=
aamax=dum
end if
end do
¢ do we need to interchange rows?
if(j.ne.imx)then
do k=1,n
dunra(i max, k)
a(i max, k) =a(j, k)
a(j, k) =dum
end do
¢ change parity of d and interchange the scale factor
d=-d
vv (i max) =vv(j)
end if
i ndx(j) =i max
¢ matrix is singular in effect but substitute for zero
if(a(j,j).eq.0.0d0)a(j,j)=TINY
c¢ finally, divide by pivot el enent
if(j.ne.n)then
dume1. 0d0/ a(j,j)
do i=j+1,n
a(i,j)=a(i,j)*dum
end do
end if
¢ go back for the next colum in the reduction
end do
return
end
SUBRQOUTI NE LUDKSB( a, n, np, i ndx, b)
¢ Solves the set of N linear equations AX=B
c
c I nput : a - the LU deconposed matrix
c n - “active’ dinension of the
matrix, a
c np - physical dinension of the
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matrix, a.
c indx - the pernutation vecotr as
returned by LUDCMP.
c b - contains the RHS vector B
c
c Qut put : b - contains the result vector X
c
INTEGER i,ii,j,Il,n, np,indx(n)
DOUBLE PRECI SI ON sum a( np, np), b(n)
c when ii is set to a +ve value it becones the index of
the first
¢ nonvani shing el ement of b.
ii=0
c do forward substitution - unscranble pernutation as
we go
do i=1,n
'l =i ndx(i)
sumeb(11)
b(11)=b(i)
if(ii.ne.0)then
do j=ii,i-1
sumrsuma(i,j)*b(j)
end do

el se if(sumne.0.0d0)then
c a non-zero el ement was encountered so have to do sums
in |oop above
¢ fromnow on
ii=i
end if
b(i)=sum
end do
¢ now do back substitution
do i=n,1,-1
sunmrb(i)
do j=i+1,n
sumrsum a(i,j)*b(j)
end do
c store a conponent of the solution vector X
b(i)=sum a(i,i)
end do
return
end
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