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Finite difference simulation of the baking process

Andrew N. Jackson - 5th May 1996

Introduction
The brief for this assignment can be outlined as follows.  I am to put myself in the position of having 
been employed by a firm of commercial bakers to investigate the factors underlying the successful 
baking of cakes.  For a simplified cake (ie having made certain assumptions about it), I will consider 
the factors which influence the baking time and final condition of the cake, and using this information 
go on to sketch out a plan for a simulation model.  From this model I can then devise an appropriate 
flow diagram for the actual code structure.
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Baking Theory
The cake-baking process can be broken down into three main stages:

1 - Rising

As the temperature of the cake mixture rises, the gas cells (beaten in during the preparation of the cake-
mix) expand and the chemical rising agent, if any, releases carbon dioxide (eg baking powder).  In 
home-baked cakes, the uneven heating of the liquid cake-mix can cause considerable convection of the 
material, up until it begins to set.  However, this does not occur in commercial cake mixes, as added 
vegetable gums increase the batter viscosity and so prevent differential movement.

2 - Setting

As the temperature increases further, the cake-mix is set into it's permanent shape by starch 
gelatinisation, and flour, egg, and milk protein coagulation (at 60°C and 71°C respectively).  Basically, 
the starch and protein molecules line up along the walls of gas cells and then, as the protein chains form 
(giving structure), water is squeezed out from between the proteins and absorbed by the starch granules 
(which can absorb up to ten times their own weight of water).  The now softened starch granules will 
become more solid as the cake is allowed to cool after baking.

3 - Browning

Once the mixture has solidified, the flavour-enhancing browning reactions can begin to take place.  
Browning only occurs significantly in the areas where moisture has been driven from the cake, in 
effect, where the cake temperature is at least 100°C (see method/further-assumptions section, page 5), 
and so browning first occurs in the sides and surface of the cake.  The products of the browning process 
diffuse inwards, improving the flavour of the cake, but if left too long the browning process will 
become charring and burning.  

Our aim is to find the oven temperatures and baking times that will lead to a well baked cake.  Too low 
a temperature and the batter solidifies too slowly, allowing the gas cells to expand too far and begin to 
coalesce, producing a heavy and rough textured cake.  At too high a temperature, the outside may well 
char and burn before the whole of the mixture has set, leading to a 'wet-spot' in the cake.
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The Model:  Assumptions From The Theory
In this section I will outline the assumptions and simplifications that can be made in order to form a 
reasonable finite difference simulation of the baking process.

1 - The Oven:

In any commercial operation, large ovens must be used in order to bake the number of products 
required, and so we can assume that we are using a very wide and good quality oven.  This means that 
while there will be some vertical temperature gradient, there will be a negligible degree of horizontal 
variation, and so all the isotherms within the oven environment will be horizontal (see fig. 1).  This 
means we can assume that the upper surface of the cake and the lower surface of the tin to each be 
exposed to a fixed temperature throughout the baking process..  

If the form of the temperature variation with vertical position is known, then the temperature gradient 
along the sides of the tin can also be specified.  The simplest model for this would be a linear 
temperature variation constructed from the temperatures at the upper and lower oven surfaces,  and I 
would expect such a model to perform reasonably well.  

2 - The Baking Tin:

A number of assumptions are made about the baking tin.  Firstly that it is cylindrical, for reasons 
explained later, and also that it is thin and made from dull, rough metal (or glass).  This means that we 
can assume that the heat of the oven is transmitted instantaneously to the cake-mix, and so the model 
behaves like a cylindrical arrangement of cake mixture that has no baking tin at all, but still manages to 
preserve it's cylindrical form.  The specification of the material the cake tin is made of is required in 
order for possible comparison with experimental results, as such tins can require as much as 20% less 
baking time than a shiny surfaced tin.
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Figure 1:  The large oven approximation (isotherms assume linear temperature variation).
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3 - The Cake Mixture:

The primary assumptions concerning the cake-mix are that it is homogenous and sufficiently viscous 
for there to be a negligible degree of heat transportation by convection.  Assumptions are also made 
concerning the chemical behaviour outlined in the theory.

Firstly we suppose that we are given a chemical pathway for each of the rising, setting and browning 
stages, and that we are also given a function or look-up table that tells us how the rate the cake-mix 
progresses along this path varies as a function of other system parameters (see fig. 2)

In other words three variables are use to represent the degree of rising, setting and browning of a part of 
the cake, and are given (for example) the symbols r, s and b.  Each of these has a rate function which 
varies with temperature (q), the exact form of which would be determined experimentally (this would 
take into account the way the starch and protein solidification occurs at 60°C and 71°C, and how the 
browning rate increases dramatically once the temperature goes past 100°C).  As well as this, we must 
take into account the fact that setting restricts rising, and that browning only occurs in cake-mix that 
has already set.  This means that the rate functions for r and b are functions of both q and s, where dr/dt 
 becomes zero and db/dt becomes non-zero as s reaches 1.0.  This approach also assumes that the 
values of r and b which correspond to a cake that has risen too far and charred instead of browned have 
been determined and can be compared with our simulation results.  A further assumption is that s 
cannot be greater than 1.0, ie that there is no such thing as a cake which has set too much.

At first I thought that a single chemical pathway and rate function would be sufficient, but interactions 
between the three processes means that this would overlook certain possibilities.  Such a scheme would 
assume that a cake always rises to the ideal amount before it begins to set, and could allow significant 
browning to occur below 100°C, both of which could lead to misleading results.

Further assumptions are that:

- The degree of expansion during the rising stage is assumed to be negligible in comparison 
with the initial volume of the cake.  This means that, within the model, the rising stage will 
translate into a texture forming stage and no physical expansion will be simulated.

• Page 4 •

- Continuum Physics II Assignment.

       Chemical Pathway                                                           Rate Function

dr = fr(q,s)
dt                         

ds = fs(q)
dt                      

db = fb(q,s)
dt                         

Figure 2:  General outline of the chemical pathways and their rate functions.
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- No significant overall water diffusion occurs while it is in the liquid phase (below 100°C), 
and the way the cake dries out should be accounted for by the rate function for the 
browning process.  While a model for simulation of the diffusion of water through the cake 
is no more complex than the heat diffusion model, I suggest that it is wise not to include a 
water-diffusion simulation into the cake model.  The main reason for this is that the 
experimental facts required to back up such a simulation would be difficult to acquire;  for 
example, we would need to know the volume of free water per unit volume of cake-mix, 
which is not only a function of the degree of solidification, s, (because solidification 
absorbs/ties down water molecules, thus reducing the amount of water that is able to 
diffuse) but also requires us to know how much water was in the initial cake-mix, where no 
water is added as a specific, lone ingredient (ie we need the water content of milk, eggs, 
butter etc).  Of course, we would also need to know the diffusivity of water molecules in 
cake-mix (a function of some or all of q, r, s and b).  Given that the water has to be 
vaporised before significant browning occurs, I feel that this process is modelled to 
reasonable accuracy by the rate function approach outlined above.

- The specific thermal capacity per unit volume and the thermal conductivity of the cake-mix 
are known as functions of the state variables of the system/environment.  ie we have 
c(q,r,s,b) and k(q,r,s,b).  These characteristics may not vary significantly with some or 
indeed all of q, r, s and b, but I would leave that for whoever is conducting the experiments 
to discover, as the information I have to hand sheds no light on this matter.  As I will outline 
in the next section, the thermal capacity and conductivity can be combined to form the 
thermal diffusivity, ie a single function can be used to represent both these physical 
characteristics (given the symbol c(q,r,s,b) in this assignment).

4 - Symmetry:

The above assumptions of tin shape and homogenous cake-mix allow us to break down the three-
dimensional nature of the model down to two-dimensions.  Instead of modelling the whole of the cake 
we can ignore the angular variable and use the model shown in fig.3 below.
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Figure 3:  Simplification of the model from 3D to 2D via symmetry.
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The Model:  Finite Difference Formulation
It is possible to set up the difference equations either by simple differencing or by the controlled 
volume approach, each give the same result.  In this situation of straightforward diffusion through a 
cartesian grid (fig.2), the simple differencing approach gives us our result easily enough.  In order to 
derive a suitable finite-difference form for a problem, we need to find a mathematical expression which 
encapsulates the physics of the problem.  For the general diffusion case,such as our heat diffusion 
problem, we use the following parabolic differential equation:

- (1)

Or, in integral form:

- (2)

In other words, the rate of change of the total quantity of e inside the volume V is balanced by the flow 
of e through the surface of that volume.  Of course, in our simulation e will correspond to the cake 
temperature.This form should maintain positivity, ie no negative temperatures should form from a 
positive initial state (e(r)>0 for all r), unless they are 
due to poor simulation behaviour.  

If we use a grid like the one shown in fig.4, and 
replace the capacity (c) and the conduction (k) with 
the diffusivity (c), then we can break eqn(1) down 
into the following two dimensional form:

- (3)

Now, by simple differencing of this equation we get:

- (4)

Where, 

with Dx and dy as the spatial finite difference steps (as fig.4), and with Dt as the finite 
difference time step.
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This formulation allows us to decide at what time we calculate the spatial derivatives (fluxes) via the 
implicitness parameter, q:

q = 0 : Explicit [1st order]

q = 1 : Fully implicit  [1st order]

q = ½ : Centred time or Crank-Nicholson form  [2nd order]

Equation 4 can now be expanded from the ‘e terms into a set of separable en and en+1 terms.  However, 
there is a slight complication in that c is a function of ‘e, and, once expanded, does not present itself in 
a separable form.  This means that for the purposes of derivation we ignore it's properties as a function 
of ‘e and just treat it as a known constant (ie we use c(en

i,j), it's value at the start of the time step of n to 
n+1).  Once the en

i,j and en+1
i,j parameters have been separated, equation 4 becomes:

- (5)

For the diffusion equation, the Crank-Nicholson method (at q = ½) is known to be stable (even when it 
is not accurate) for all values of Dt.  For this reason I would suggest using the C-N method for this 
problem.  Equation 5 can now be expressed in the following general form:

- Ai,j ei,j+1  - Bi,j ei+1,j  - Ci,j ei,j  - Di,j ei-1,j  -Ei,j ei,j-1  =  Fi,j             - (6)

As the data parameters for all the values of i and j are assembled (ie all i from 0 to I and all j from 0 to 
J), we can simplify the solution of this matrix problem by breaking the two-dimensional array ei,j down 
to form the one dimensional array Ek, where k = i + (j - 1)I.  This means that equation 6 reduces to the 
form:

Mk,l El = Fk         - (7)

Where Mk,l is a well defined sparse matrix consisting of five diagonal lines corresponding to each of A, 
B, C, D and E in equation 6.  While holding q = 0 or q = 1 would make solution of the problem easier, 
both introduce limits on the time-step we can use and so we need to use one of the iterative matrix 
solution methods.  For our problem it would probably be best to use one of the family of sparse matrix 
solvers, which work as follows:  Given a matrix M, find an approximate M-1, call it ‘M-1, which has 
roughly the same simple sparsity pattern. This means we can perform ‘M-1.F very quickly, allowing us 
to iterate to convergence using F - M.‘M-1.F, which will become zero as ‘M-1 becomes M-1.  For 
example, the ICCG (Inerative Cholesky Conjugate Gradient) method works well for symmetric 
matrices, expressing M in the form LLT and then using the maximum gradient in the error so that the 
iterations converge rapidly.  However, before any solution is possible, we must first define the domain 
of the simulation and the boundary conditions that apply to it.
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We must first define the dimensionless finite-difference domain.  In order to make the simulation more 
general, we can translate the simulation into a spatially dimensionless form.  This means we essentially 
simulate a cake of unit radius and unit height, the results from which can then be scaled/redimensioned 
to the proportions of the specific cake we are dealing with.  For our cake simulation, it is not possible to 
use a dimensionless form for temperature because the oven is not at a single temperature, but has a 
vertical gradient, the severity of which would completely alter the results of the simulation.  In a single 
temperature situation, the cake baking would always follow the same pattern, and the rate of baking 
would simply depend on the difference between the cake's initial temperature and the oven 
environment temperature.  In other words an alteration in the temperature scale of the problem could be 
be compensated for by using a related alteration in the time scale.  With a strong temperature gradient, 
the cake would bake in a completely different and much more uneven manner than with no temperature 
gradient and so there is no simple simulation solution that can be scaled (spatially or temporally) to 
cover all the possible outcomes (with the possible exception of a solution whose degree of temporal 
scaling is a function of vertical position, but his would be very complicated and perhaps not even 
possible within the bounds of finite-difference simulation).

I should mention here that when using the spatially dimensionless arrangement we must remember to 
scale the diffusivity function (c) from it's normal units (m2s-1) into the spatially dimensionless form 
using the relationship between the cake's height and width and the simulation space units (ie for a cake 
12 cm in radius (R) and 8 cm in height (H), one vertical simulation unit = 0.08 m and one horizontal 
space unit = 0.12 m).  This of course means that we must scale the diffusivity differently depending on 
whether we are looking at vertical or horizontal diffusion (this would be accounted for by simply 
substituting DX = Dx/R and dY =  dY/H into equation 5 and using a new coordinate system based on X 
and Y) 

Figure 5 illustrates the general form of the grid that would be used for this simulation with I=6 and J= 
6, which is somewhat coarser than the grid that the program would actually use.

The figure also identifies the boundary conditions that apply to our simulation, of which there are two 
kinds.  Along the points that correspond to the outside edges of the cake, we have Dirichlet boundary 
conditions, where the value at that grid point is known, in this case it is the oven temperatures as 
defined by the oven temperature gradient function.  Along those points which correspond to the vertical 
axis of the cake we have a Neumann boundary condition, because the simulation is reflective over that 
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Figure 5:  Illustration of the finite-difference domain.
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axis and so there is no net flux of heat across this boundary.  The corner points, which are not directly 
connected to the points inside the cake, are not important, and while they do exist within the matrix 
formulation of the problem, they are just set to zero and should not interfere with the solution.  
However, the Dirichlet and Neumann boundary conditions must be incorporated into matrix equation 7 
otherwise it will not be solvable.  In the case of the Dirichlet points, the exact temperature values, as 
calculated from the definition of the oven environment, can be substituted into the matrix equation.  
The Neumann condition is similar but instead of placing an exact value into the matrix, a value of 
temperature is copied from the points on the inner edge of the inside the cake to their corresponding 
Neumann boundary points.

While these measures allow us to solve the thermal diffusion problem, I should also outline the finite 
difference form of the rising, setting and browning processes.  As stated earlier, the rates these 
processes move at have the form:

dr = fr(q,s)
dt                        

ds = fs(q)
dt                     

db = fb(q,s)
dt                        

And so the problem requires us to simultaneously solve three simple differential equations.  As we can 
only evaluate the functions for the current temperature (ie at n, not n+1), in a similar fashion to the 
behaviour of c previously,  these equations have the following finite difference form (where e and q are 
synonymous):

rn+1
i,j = rn

i,j  +  fr(qn
i,j, sn

i,j) . Dt

sn+1
i,j = sn

i,j  +  fs(qn
i,j) . Dt

bn+1
i,j = bn

i,j  +  fb(qn
i,j, sn

i,j) . Dt

And so the state of each point within the cake can be calculated as time passes and as the heat of the 
oven diffuses into the cake.
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Flow Chart of the General Code Structure

Initialisation Procedure:

Define required data structures (including MI×Jmax,I×Jmax, EI×Jmax and FI×Jmax).
fl

Read in cake defining parameters (either from a data file or from the user).
This may include data which describes characteristics such as c if they do not have a well defined 

functional form.
Also read in oven environment parameters.

fl

Initialise state counters (time=0, rising=0, setting=0, browning=0).
fl

Define the mesh for the problem in terms of data structures (xI,J, yI,J), including a structure which show
s whether a particular point is internal, or if it is a boundary point, and if so whether Dirichlet or 

Neumann (ie of the form bound(I,J) = 0,1,2 for internal, Dirichlet, Neumann).  The temperatures for the 
Dirichlet boundaries can be defined from the oven environment parameters via the yI,J structure.

fl

Given the above parameters, assemble the initial temperature distribution matrix, Ek, 
where k=i+(j-1)* I as before.

fl

Define the time between presentation of results (tstep).
fl

Main Program Loop:

Assemble the Mk,l and Fk matrices from the r ,s, b, Ek and c data, and then r
eset the Ek matrix ready for solution.

fl

Scanning through all the grid points, pick out those which lie on a boundary and 
insert the Dirichlet/Neumann boundary conditions into 

the thermal diffusion matricies.
fl

Solve matrix equation 7 (Mk,l El = Fk) using a sparse matrix solver such as ICCG.
fl

Use the new temperature distribution, Ek, to follow the progress of 
the differential equations describing the rising, setting and 
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browning process using the finite difference form mentioned earlier.
fl

Increase the time counter.
fl

Has tstep passed since the last calculation loop began?
If NO then loop back over main calculation...

If YES then:
fl

Present the current state of the cake to the user.  This would probably 
consist of three cake plots, one for each of the rising, setting and 
browning processes.  For the 0.0 to 1.0 (to > 1.0) progress scales 

that r, s and b represent (along with over-rising and 
over-browning scale data), a palette of colours would be 

defined so that each element would be coloured in to 
illistrate the cakes status (probably a blue to green to red 

colour selection).
fl

Prompt user to ask whether to continue the the simulation for 
another tstep seconds.

If YES then loop back for next tstep period...
If NO then:

fl

END
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