
The Nuclear Reactor
An application of Monte Carlo simulation methods

Page 1

This experiment concerned the accurate simulation,
via Monte Carlo methods, of an infinite and finite
spherical nuclear reactor of homogeneous nature.
The main aim being to analyse how the proportions of
constituent atoms in the reactor affected it's
performace and so how to balance these proportions
in order to create an efficent system. Having done
this, the effect of finite size of the reactor performance
could be determined. It was discovered that there is a
well defined set of conditions for maximum efficiency
and that the size of the reactor has a significant effect
on the reactor performance at macroscopic levels.

Andrew N Jackson 9th May 1995

Introduction

The testing of a nuclear reactor is perhaps one of the best examples of the advantages
computational simulation holds over physical experimentation. Once the software is written,
countless experiments to examine the factors affecting a reactors performance can be carried
out at little cost and with no dangerous side effects.

In this computational experiment we consider a simple reactor model consisting of carbon
atoms and two isotopes of uranium (U235 and U238), all of which are intimately mixed (ie the
reactor can be considered homogenous). The nuclear chain reaction propagates as follows:

 - Splitting U235 atoms releases high speed neutrons.
 - High speed neutrons are slowed down to thermal energies by collisions with carbon atoms.
 - Atoms of U235 absorb thermal neutrons and fission occurs, creating more high speed
neutrons.

However, reality is not quite this simple, in that the travelling neutrons can be absorbed by
U238 before it can slow right down. Indeed any atom in the reactor stands a chance of
absorbing a neutron, thus stopping that neutron from going on to complete it’s part of the
chain reaction (although resonance absorption by U238 is the main culprit). Due to this
possibility of neutron loss, the reactors ability to sustain the chain reaction depends strongly
on the exact proportions of the different atoms in the reactor. This in turn depends on the
ratio of U235 atoms to U238 atoms (how pure the uranium fuel is), and the ratio of fuel atoms to
carbon atoms (the proportion of the reactor which is moderating the speed of the neutrons,
and thus moderating the overall reactor performance). We measure the performance of the
reactor by it’s multiplication factor, k, which is defined as the average number of neutrons
created by each high speed neutron in the system. Therefore, in order for the reactor to be
self-sustaining, k must be greater than or equal to 1. However, as high values of k can lead
to a rapidly accelerating reaction, ie a nuclear bomb, we are only interested in a reactor that is
just self-sustaining, in other words, where it’s multiplication factor is exactly equal to 1.

The aim of this experiment is to find the best balance of the fuel to moderator ratio, and the
minimum level of (costly) enrichment of the fuel required to make a reactor self-sustaining.

In order to simplify the simulation, we first investigate the behaviour of an infinite reactor
before going on to consider how finite size effects reactor performance.

Page 1

Theory

The implementation of the Monte Carlo method for this simulation involves following the lives
of a large group of neutrons in the reactor, with each neutron taking it’s own random walk
from release by a splitting U235 atom through to either absorption, exiting the reactor, or to
causing further fission. If we keep count of how many fissions occurred, we can work out how
many neutrons were created by our group of neutrons, and so we can work out the
multiplication factor, k (as neutrons out /neutron in), for the reactor. From this it is possible to work out
how the enrichment level and fuel:moderator ratio affect the reactors performance (by doing
the above calculation for various configurations of reactor).

A single neutrons random walk through the reactor breaks down into 4 basic steps:

i) Neutron release by U fission
In the simulation, each neutron begins it’s random walk as a product of U fission. The
statistical distribution (in MeV) for this process is given by:

N(E) = C sinh [Ö(2E)] e-E

Where N(E) dE is the number of neutrons in the energy range E -> E+dE MeV. The neutrons
are emitted isotropically, with a mean energy of 2MeV, and the peak of the distribution is at
0.72 MeV (see fig. ii:1).

Figure 1 : Fission neutron's energy distribution:

ii) Neutron slowing down
After a neutron has been emitted, it is slowed down to thermal energies(~0.025 eV) by a
series of elastic collisions with moderator atoms (ie carbon). As the reactor consists of
various types of atoms, for each collision we consider we must make a decision as to whether
the neutron hits carbon, U235 or U238. Indeed, having made this decision, we need to decide if
the atom in question scatters or absorbs the neutron. The process of making these decisions

Page 2

0

1e+06

2e+06

3e+06

4e+06

5e+06

0 2 4 6 8 10

N
eu

tr
on

 d
en

si
ty

 w
rt

 e
ne

rg
y

Energy

C*sinh((2*C)**0.5)*exp(-E)

is based on branching probabilities, where a uniform deviate is used to decide which of all the
possible outcomes occurs for this collision. If, for example, the decision to be made concerns
whether a hypothetical coin comes up heads or tails, then the branching probability situation
is as described in fig. ii:2. As the probability of each is 1/2, we simulate throwing a coin by
creating a uniformly distributed random number and seeing which range it lies in. If the
number is between 0 and 0.5, we count a head, and if the number lies between 0.5 and 1, we
count a tail. For a many coins simulation, this will give the result that the probability of a head
or a tail is 1/2. Although this is a pointlessly simple example, this method is very useful for
making decisions in more complex systems, and all the decisions made for the reactor
simulator work in this way.

Figure 2 : The technique of 'branching probabilities':

The actual probabilities we need to decide between come from the 'cross-sections' of each
possibility, where a cross-section represents the effective area that an atoms places in the
path of a particle for the appropriate interaction to take place. This usually has the symbol s,
for example; sa for absorption, ss for scattering and so on. To carry out the calculation, we
require the probability per unit length, S, given by:

S = Ns

Where N is the number density of the particular type of atoms in question, which can be
calculated from:

N = 0.6025×1027 × Density
 Atomic weight

This allows us to calculate the mean free path for the system by finding the total probability of
any kind of collision occuring, and simply inverting it (ie dividing 1 by the result). For example,
if the total probability of a collision is given by:

Stotal = Nasa + Nsss

then the mean free path, usually denoted by an l, is: 1
Stotal

Therefore, the calculation can proceed under the assumption that the neutron travels an
average distance l between each collision, and that we only have to make any decisions
about the neutrons random walk at these points. To do this we need to know the branching
probabilities of scattering and absorption for a collision, and what the probabilities of the atom
being carbon, U235 or U238 are. These are simple to calculate, for example the probability of
scattering occuring is:

P(scat) = Ss
Stotal

Page 3

0 0.5 1

Random uniform deviate

Heads Tails

[The cross-sections we require (along with other data) are contained in appendix A.]

As mentioned before, the principle mechanism for neutron loss is through resonance
absorption by U238. This is slightly more complicated than before, because while most of the
cross-sections involved are independent of reactor configuration, the absorption cross-section
for U238 depends strongly upon it (more specifically, it depends on Ss / N238). This dependence
is described by the table of (Ss / N238) against sa in appendix A, and linear interpolation is used
to approximate a value for sa from this data. From all of this we can calculate all the
probabilities we need.

The whole point of the slowing down phase is for the neutrons energy to be decreased
through collisions, and to be able to do this we need to know how the energy is affected by a
collision. The energy loss in an elastic collision is related to the angle of deflection, q, through
the equation:

E1 = 1 + 2AcosQ + A2

E0 (1 + A)2

Where E0 and E1 are the energies before and after collision, and A is the mass number of the
scattering atom. It takes around 100 collisions with carbon (low mass number, high energy
exchange) to slow a neutron down to thermal energies.

iii) Neutron Diffusion
A neutron cannot cause fission until it has slowed to thermal energies (ie until it is at the same
'temperature' as the reactor). After this point, no net energy loss can occur and so we ignore
that possibility as we follow the neutrons randomly scattered path, until it is absorbed (which
may possibly lead to fission) or lost from the reactor altogether.

iv) Neutron production through fission
On average, a splitting U235 atom releases 2.47 fast neutrons. Therefore if we test N neutron
lives, and n of them cause fission, then:

k = (2.47 × n)/N

The reactor multiplication constant, k, must be greater than 1 for the reactor to be self-
sustaining. However, as mentioned before, we are interested only in the reactor condition
where k is equal to 1.

Page 4

Method (part 1) : The Infinite Reactor

Before we can even begin to program the actual neutron life simulation, we need to assemble
all of the data we need into a form accessible from FORTRAN. As the aim is to see how the
enrichment (E) and fuel to moderator ratio (f:m) factors affect the reactor, we need to keep in
mind that we will use the program to analyse their effect later. This means that the data splits
into two sections; the constant parameters, that always remain the same, and the variable
parameters, whose value in some way depends of E and f:m. When creating these
constants, and indeed when naming all program variables, I have used a categorisation
procedure such that those names beginning with the letters 'a'-'h' or 'j'-'z' refer to double
precision data (unless otherwise stated). The 'i' prefix excluded in the above definition is used
to identify integer variables.

The constant parameter section consists of most of the data from appendix A, ie the thermal
energy value (0.025 eV), the densities and atomic weights of carbon and uranium, the
scattering, absorption and absorption leading to fission cross-sections for the three isotopes
present (C12, U235 and U238), and a conversion factor to convert figures in barns to metres
(defined as 1 barn = 10-28 m). The second section is mainly calculations for number densities
and probabilities. Since the uranium fractions are very small, the number densities can be
worked out as follows:

N12 = 0.6025×1027 × [Density]carbon
 [Atomic Weight]carbon

N235 = F × N12

N238 = (1 - F) × N12

Where F is the ratio of U238 to U235, defined from the enrichment factor multiplied by the natural
U238:U235 ratio (~1/138). The rest of this section, which concerns cross-sections and
probabilities, is mostly straightforward. The only complication is that the absorption cross-
section of U238 has to be looked up from the tabulated data shown in appendix A. This simply
involves a series of if statements and a set of calls to a small double-precision interpolation
procedure (called 'dinterp') which, for a function y=f(x), works as follows: If the x interpolation
range is xlow to xhigh with corresponding y range ylow to yhigh, then given a value for x inbetween,
(called xmid) an approximate value for ymid can be found from:

ymid = (xmid - xlow) × (yhigh - ylow) + ylow

 (xhigh - xlow)

There is, unfortunately, a further complication, in that the table includes an interpolation
between 2000 and infinity. This is obviously impossible using the formula above, and finding
the correct modification of the formula caused me some problems. At first I though that the
problem could be solved by adding an inversing function to all parameters, ie:

ymid = [(xmid
-1 - xlow

-1) × (yhigh
-1 - ylow

-1) + ylow
-1]-1

 (xhigh
-1 - xlow

-1)

This, however, is not the correct method, and later caused my program to produce incorrect
results (in comparison to the data from Professor Pert's program). I later discovered my

Page 5

mistake and found that the method only requires you to fit an inverting function onto the x-
range part of the data, as below:

ymid = (xmid
-1 - xlow

-1) × (yhigh - ylow) + ylow

 (xhigh
-1 - xlow

-1)

Having found all the neccessary cross-sections and number densities as, it is possible to go
on to calculate the probabilities of scattering, absorption and absorption leading to fission at
thermal and non-thermal temperatures. Once this is done, we are ready to go on to the
simulation itself.

As mentioned before, the reactor simulation consists of running many neutron lives through
the reactor and working out the reactors performance from the average fates of these
neutrons lives. This means that the most important element of this experiment is the correct
simulation of a single neutrons random walk. The program structure needed to do this is
illustrated in figure 3 below.

Figure 3 : Flow chart for infinite reactor simulation:

Before we can implement this structure, we require two routines: A random number generator,
'ran1', and the random energy deviate generator, 'disdev' (see fig. 1). Once these have been
appended to the code, the first step (neutron production) consists of simple a call to 'disdev' to
pick an energy for the current neutron. The free flight/collision loop part requires one
branching probability decision to be made, and based on this decision, an energy alteration

Page 6

Neutron produced

After free flight of

mean free path,
neutron collides:

distance of one

Scattered Absorbed

Alter energy
due to

collision.

End simulation.

Has neutron
reached thermal

energies?

No Yes

As neutron will be
absorbed eventually,

decide whether
fission occurs:

Yes No

Record that
fission has

occured and
end simulation.

End simulation.

and energy check. Once the neutron is thermal it simply diffuses through the reactor,
and as this is an infinite medium, it is sure to be absorbed eventually, and so we can assume
that it is absorbed and work another branching probability for the chances of fission occuring
under those conditions.

Once implemented, the code has the form shown in code fragment 1.

Code Fragment 1 : The branching probability based infinite reactor.

Where 'AbsPrb' is the probability of absorption out of either absorption or scattering,
'CarbScat' is the probability of hitting a carbon atom given that a collision has occurred and
'FissPrb' is the probability of fission occuring given that the thermal neutron is absorbed.

From this it is plain to see that for a large number of neutrons, 10,000 for example, the
program is going to carry out a very large number of calculations, and thus will be very slow to
run. There are ways to reduce the number of calculations needed, known as variance
reduction techniques, and now that we know how the most basic neutron simulation works,
we can go on to apply one of these alternative methods to speed up the calculation. Although
we first need to identify where most of the time is lost.

The problem is that when a neutron has been absorbed, we simply drop the calculation we
have been doing and forget about it, moving on to the next neutron. As each fission creates

Page 7

c Get energy, converting to eV:
 Energy=disdev(idum)*1.0d6
 iEndLife=0
c Loop over one neutron life.
 666 IF (Energy.GT.ThermSwitch) THEN
c Scatter or absorb:
 Rand=RAN1(idum)
C If absorbed:
 IF (Rand.LE.AbsPrb) THEN
 iEndLife=1
 ELSE
C Else scattered(was it carbon? If not ignore collision):
 Rand=Rand-AbsPrb
 IF (Rand.LE.CarbScat) THEN
 Costheta=-1+2*RAN1(idum)
 AtW=AtWC
 NewEnrg=Energy*(1+2*AtW*Costheta+AtW*AtW)/((1+AtW)*(1+AtW))
c END IF
 END IF
 ELSE
c in thermal range so; Absorb or fission:
 Rand=RAN1(idum)
c If fission:
 IF (Rand.LE.FissPrb) THEN
 iFissions=iFissions+1
 iEndLife=1
 ELSE
c Else absorbed:
 iEndLife=1
 END IF
 END IF
 Energy=NewEnrg
 IF (iEndLife.NE.1) GOTO 666

more that one neutron (2.47 on average), then we only need 1 neutron out of every 2.47 to
cause fission in order for the reactor to balance at k=1. This means that most of the neutron
lives we run end in absorption by U238 during the time spent at high energies. From this we
can see that cutting down on the number of dumped calculations could be very beneficial for
speed, and one of the methods that we can use to improve this situation is survival biasing.

Survival biasing is based on the simple concept of weighting a neutron life simulation
according to how well it is going. In the current system, each neutron carries a weight of 1, as
when a neutron causes fission it increases the fissions counter by 1. Under survival biasing,
a neutron begins it's life with a weight of 1, but at any point in time after this, the weighting is
made to change in accordance with how likely it is that the neutron survived up to that point
without being absorbed. For example, if the probability of a neutron being absorbed is 0.1,
then the probability of it surviving absorption is 0.9, and so for every collision it undergoes,
90% of that neutron will survive to the next collision. In other words, we just multiply a
neutrons weight by the probability of survival for every collision it undergoes. Applying similar
arguments to the chance of fission occuring from absorption at thermal energies, and
modifying the fission counter to handle real numbers (not just integers), the simulation of one
neutron life simplifies to a structure such as that shown in code fragment 2.

Code Fragment 2 : The infinite reactor simulation using survival biasing

Where 'ScatPrb' is the probability of the high-energy neutron surviving absorption (simply the
probability of scattering), 'CarbScat' is the chance of hitting carbon given that scattering
occurs, and 'AbsLow' is the double precision counter to add up the weights of neutrons after
absorption at thermal energies. The number of fissions that occurred can be calculated
simply as the number of low energy neutrons absorbed (ie AbsLow) multiplied by the
probability that such a neutron will cause fission.

While this is a great improvement on the previous scheme, the calculation can be simplified
further. As we are only interested in f:m ratio of the order of 1:100 to 1:1000, the chances that
a scattered neutron has hit an atom other that carbon is small enough to be treated as
negligible, as so we can assume that the neutron always hits a carbon atom. It is also
possible to make the calculation of the energy alteration quicker, in that we can break down
the formula in order to simplify the collision code.

Page 8

c Get energy & set initial weighting:
 Energy=disdev(idum)
 weight=1.0d0
c Loop over one neutron life.
 666 weight=weight*ScatPrb
c Scattered, but was it carbon?
 Rand=RAN1(idum)
 IF (Rand.LE.CarbScat) THEN
 Costheta=-1+2*RAN1(idum)
 AtW=AtWC
 Energy=Energy*(1+2*AtW*Costheta+AtW*AtW)/((1+AtW)*(1+AtW))
 END IF
 IF (Energy.GT.MTSwitch) GOTO 666
 AbsLow=AbsLow+weight

We have already seen that the equation for the energy change is:

E1 = 1 + 2Acosq + A2

E0 (1 + A)2

Where A is the atomic weight of the atom in the collision. When this is implemented in the
program, cosq is given by:

cosq = -1 + 2x

Where x is a uniform random deviate between 0 and 1. By substituting this into the energy
formula, we get:

E1 = 1 - 2A + 4Ax + A2

E0 (1 + A)2

Or,

E1 = 1 - 2A + A2 + 4A . x
E0 (1 + A)2 (1 + A)2

So, if we define two variables as below:

Esum = 1 - 2A + A2 Eratio = 4A
 (1 + A)2 (1 + A)2

Then the equation for the energy change simply becomes:

E1 = Esum + Eratio.x
E0

Once these simplifications are implemented, the neutron simulation code takes the form
shown in code fragment 3.

Code Fragment 3 : The infinite reactor simulation using simplified survival biasing

This highly simplified form runs very quickly, making it possible to go on to find accurate
estimates of how the enrichment and the fuel to moderator fraction affect the reactor in a
reasonable time. The rest of the programming method for the infinite reactor deals with those
alterations/additions which are necessary to make correct analysis possible.

Page 9

c Get energy & set initial weighting:
 Energy=disdev(idum)
 weight=1.0d0
c Loop over one neutron life.
 666 weight=weight*ScatPrb
 Energy=Energy*(ESum+ERatio*RAN1(idum))
 IF (Energy.GT.MTSwitch) GOTO 666
 AbsLow=AbsLow+weight

Firstly, we need to add a loop over the single neutron life simulation in order to run enough
neutrons through the reactor to get a decent result. Then I added two more loops, the first to
cycle over the desired range of enrichment (1-10), and the second to cycle through the f:m
range (1:1000 - 1:100). In order to appreciate this data, I added the necessary graphics
routines to obtain the plot required (k as a function of f:m for a range of E values), and file
handling routines to dump the data on to disc. The general structure of the program is given
in figure 4 below.

Figure 4 : General structure of the infinite reactor simulator

At this stage, the program has all that is required to make a full analysis of the effect of E and
f:m on an infinite reactors performance. The full program is supplied in appendix B.

Method (part 2) : The Finite Spherical Reactor

While the general structure of the simulation does not change when considering the finite
reactor, we do have to change the neutron life simulation so that it keeps track of the neutrons
position and speed, as well as it's energy. In this way we can track the neutrons through the
reactor and see if any are lost through the reactors walls. We make the prospect of tracking
the neutrons easier by assuming that the reactor is spherically symmetrical, as this means we
only need to track radial position, velocity and the angle between the radius and velocity
vectors (see fig. 5). Although position and speed are in vector form in the diagram, we only
need to know their magnitudes to identify the neutrons position if we have the angle betweeen
the vectors. In the program, speed is stored under the guise of the neutrons energy.

Figure 5 : Storing a neutrons position under spherical symmetry

Page 10

Title of program and other comments

Definitions of constant parameters

Display program details on the screen

Loop over enrichment range:

Loop over fuel:moderator range:

Calculate variable parameters

Loop over many neutron lives:

Single neutron life simulation

Output k/f:m/E for a reactor setup

Tidy up and exit...

R

v

y

Once this coordinate system has been set up, we need to examine how the neutrons random
walk between free flight and collisions affect these coordinates. If the mean free path is given
by l, then we assume that the deviation from this is such that:

l = -ln(x)

Where x is uniform random deviate, giving a logarithmic distribution of lengths of path. For
one particular loop of the program, we assume that the neutron travelled this distance l before
hitting something and re-calculate the position as shown in figure 6.

Figure 6 : Translation of neutron coordinates in free-flight

By applying the cosine rule to the internal triangle in the above diagram, we get:

rnew
2 = rold

2 + l2 - 2 rold l cos (180-yold)
= rold

2 + l2 + 2 rold l cos (yold)
and,

cos ynew = rnew
2 + l2 - rold

2
 2 rnew l

Once the neutron has moved to this new position, it then collides with an atom, and so we
need to know how to alter the angle between the radial and velocity vectors under this
conditions. It can be shown that the angle changes such that;

cos ycoll = (1 + A cosq) cosy + A sinq siny cosf
 Ö[1 + 2 A cosq +A2]

Where y corresponds to the angle between the radius and velocity vectors before collision,
and where 3 dimensional scattering is represented be the two random deviates:

cosq = -1 + 2x [as before]
and,

f = 2px

The energy change associated with the collision is the same as before.

While this is all the information needed to track the neutron through the system, there is an
extra complication in the finite reactor simulation. The problem is that we can no longer

Page 11

R

y

R

y

old

new
old

new

180 - yold

l

assume that, once thermal, the neutron will be absorbed eventually because it may escape
through the reactor walls before absorption occurs. This means that we need to track the
position of the neutron the same way for thermal energies as we do at non-thermal energies,
whilst allowing for the possibilities of scattering, absorption or absorption leading to fission.

Once this is implemented, the program is as shown in code fragment 4.

Code Fragment 4 : A neutron life in the finite spherical reactor

Page 12

c Get energy & set initial weighting:
 Energy=disdev(idum)
 NeuCost=COS(6.283185307d0*RAN1(idum))
 weight=1.0d0
c Loop over one neutron life, above thermal energies first.
 666 IF (Energy.GT.MTSwitch .AND. RadPos.LE.Rad) THEN
 weight=weight*ScatPrb
 costheta=-1.0d0+2.0d0*RAN1(idum)
 l=-MeanPath*LOG(RAN1(idum))
 IF (l.GT.0.0d0) THEN
c Alter radial position and angle through translation:
 NewRadPos=DSQRT(RadPos*RadPos+l*l+2.0*RadPos*l*NeuCost)
 NeuCost=(NewRadPos*NewRadPos+l*l-RadPos*RadPos)
 +/(2.0d0*NewRadPos*l)
 RadPos=NewRadPos
c Alter neutron velocity angle as in a collision:
 cosphi=DCOS(6.283185307d0*RAN1(idum))
 sintheta=DSIN(DACOS(costheta))
 NeuSint=DSIN(DACOS(NeuCost))
 NeuCost=(1.0+AtWCol*costheta)*NeuCost+
 +AtWCol*sintheta*NeuSint*cosphi
 Efactor=1.0+2.0*AtWCol*costheta+AtWCol*AtwCol
 NeuCost=NeuCost/DSQRT(Efactor)
 Energy=Energy*Efactor/((1.0+AtwCol)*(1.0+AtWCol))
 END IF
 GOTO 666
 END IF
 AbsLow=AbsLow+weight
c Below thermal energies:
 667 IF (Energy.LE.MTSwitch .AND. RadPos.LE.Rad) THEN
 branch=RAN1(idum)
 IF (branch.LE.tAbsPrb) THEN
c Neutron absorbed, weight fission chance and end calc:
 Fissions=Fissions+weight*FissPrb
c End calculation by throwing neutron out of the reactor:
 RadPos=2.0*Rad
 ELSE
c Scattered, calculate the movement through reactor:
 costheta=-1.0d0+2.0d0*RAN1(idum)
 l=-MeanPath*LOG(RAN1(idum))
 IF (l.GT.0.0d0) THEN
c Alter radial position and angle through translation:
 NewRadPos=DSQRT(RadPos*RadPos+l*l+2.0*RadPos*l*NeuCost)
 NeuCost=(NewRadPos*NewRadPos+l*l-RadPos*RadPos)
 +/(2.0*NewRadPos*l)
 RadPos=NewRadPos
c Alter neutron velocity angle as in a collision:
 cosphi=DCOS(6.283185307d0*RAN1(idum))
 sintheta=DSIN(DACOS(costheta))

However there is one more problem to be solved before we can begin simulation of the
reactor, which is that we don't know where to start the neutrons from. Obviously, starting
them from the same place, or even having them uniformly distributed over the sphere will give
us inaccurate results. It can be analytically shown that diffusive loss gives rise to a neutron
density profile (see fig. 7):

n = n0/R sin[pR/Re]

at radius R, where Re is determined by the sphere radius, R0, and the thermal neutron mean
free path, l :

Re = R0 + 0.71l

The implemented code for the finite reactor is given in appendix B.

Figure 7 : Neutron density distribution (at arbitrary x/y scales)

Notes on reactor analysis

While the programs supplied in the appendices contain all the important elements of the
simulation, the programs were modified to give the desired results. Simple alterations were
made to pick out different information, such as adding line that would pick out the optimum
performance values for f:m and plotting a graph of them. Details of these minor modifications
will be given in the results section as they arise.

Page 13

 NeuSint=DSIN(DACOS(NeuCost))
 NeuCost=(1.0+AtWCol*costheta)*NeuCost+
 +AtWCol*sintheta*NeuSint*cosphi
 Efactor=1.0+2.0*AtWCol*costheta+AtWCol*AtwCol
 NeuCost=NeuCost/DSQRT(Efactor)
 END IF
 END IF
 GOTO 667
 END IF

0

1

2

3

4

0 0.5 1 1.5

N
um

be
r

of
 n

eu
tr

on
s

at
 a

 g
iv

en
 r

ad
iu

s

Radial Position

(sin(pi*x))/x

Results (part 1) : The Infinite Reactor

The main infinite reactor program, as supplied in appendix B, which examines reactor
performance in relation to fuel:moderator ratio and enrichment give the output in figure 8.

Figure 8 : k against f:m for a range of enrichment (E)

The way in which reactor performance varies with f:m can be thought of as the balancing
process between there being too little carbon to slow the neutrons down before absorption
and there being too much carbon for the neutron to stand a chance of hitting a U235 atom and
causing fission before being absorbed. These two effects are combined to produce a balance
point, ie a maximum at approximately f:m = 0.0024, or 2.4 uranium atoms to every 1000 of
carbon. As the fuel is enriched (shown by the progression of curves for E=1-10 in steps of
0.5), the peak becomes less well defined (although stays in roughly the same place), and the
level of enrichment makes less and less difference at higher E, leading to saturation by the
level of around E=9. One interesting feature is the way that, for high levels of enrichment,
0.001 takes over as the optimum f:m. This is because the main loss of neutrons is via
resonance absorption by U238, and when the fuel is highly enriched there are so few U238
atoms that the neutron stands little chance of absorption in the slowing down phase, and is a
lot more likely to cause fission when finally thermal, no matter how long it takes to slow down
(which corresponds to how many carbons there are). In the limit, ie at infinite enrichment, I
would suggests that the curve forms a 1/x shape, tending to infinity at zero (because as long is
there is some carbon, the neutron will eventually slow down and be absorbed often leading to
fission).

In order to get the most out of our reactor, we should be running it at it's most efficient, ie at

Page 14

0

0.5

1

1.5

0.001 0.0022 0.0034 0.0046 0.0058 0.007 0.0082 0.0094

P
er

fo
rm

an
ce

 (
k)

Fuel/moderator fraction (f:m)

E=1

E=10

In steps of 0.5

the fuel:moderator ratio that corresponds to the maximum on the graphs. We can find this
turning point by altering the program to pick out the values of f:m that give the maximum
performance for a given E, and plotting a graph of the best f:m value against E. When
suitable alterations have been made, the output is as shown below (fig.9).

Figure 9 : Optimum f:m against E

The graph shows the switch to a lower f:m ratio at high enrichment levels well, as well as
showing that the maximum is rougly stable for low enrichment. As I have said, we are only
interested in the point where the reactor is just stable, and from figure 8 we can see that, if we
assume we have the reactor working at maximum efficiency then the required level of
enrichment is approximatly at E=2.0. This means that we are only interested in the graphs
maximum at low E and so an average of the data from the enrichment range 1.0-3.0 will give
us a good estimate of the optimum f:m value:

Therefore the optimum f:m ratio is approximatly

f:mopti = 2.484×10-3 ± 0.076×10-3 (3.1% error)

Where the error given is big enough to cover all the values in the table above (ie go up to
2.56×10-3).

Page 15

0

0.001

0.002

0.003

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

O
pt

im
um

 fu
el

:m
od

er
at

or
 r

at
io

 (
f:m

)

Enrichment factor (E)

 E Optimum f:m
1.00000000000 2.560000030790E-03
1.50000000000 2.460000031861E-03
2.00000000000 2.460000031861E-03
2.50000000000 2.480000031646E-03
3.00000000000 2.460000031861E-03

Now we know the optimum f:m ratio (2.498 fuel for every 1000 carbon), we can go on to find
the minimum enrichment level needed to get k=1. To do this we alter the program such that
f:m is set to the constant value of 2.498×10-3 and the enrichment factor has the range
1.0-10.0 and the output is of the graph performance against enrichment (see fig. 10).

Figure 10 : Optimum k against full enrichment range

By altering the program slightly, we can 'zoom in' on the marked cross over point (ie where k
passes through 1) and get the graph in figure 11.

Figure 11 : Optimum k against E close-up

And by zooming in once more, we get the final output as in figure 12.

Page 16

0

0.5

1

1.5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

O
pt

im
um

 p
er

fo
rm

an
ce

 (
k)

Enrichment factor (E)

0.9

0.95

1

1.05

1.1

1.5 1.7 1.9 2.1 2.3 2.5

P
er

fo
rm

an
ce

 (
k)

Enrichment factor (E)

Figure 12 : Optimum k against E very close up

At this level of examination the output starts to break up, but by fitting a linear curve to the
data, we get that the optimum performance at this enrichment goes as:

k = 0.14799E + 0.70758

Therefore, for the ideal value of k=1,

E = (1 - 0.70758)/0.14799
 = 1.975944

The linear curve fitter gives errors of ±3.2×10-3 (2.1%) in the slope and ±6.4×10-3 (0.6%) in
the intercept, and so;

E = 1.976 ± 0.046 (2.3%)

Page 17

0.99

0.995

1

1.005

1.01

1.95 1.96 1.97 1.98 1.99 2

P
er

fo
rm

an
ce

 (
k)

Enrichment factor (E)

~0.14799x + 0.70758

Results (part 2) : The Finite Spherical Reactor

We can begin to analyse how the radius affects the performance in the same way that we
analysed how the enrichment affected it. Just by plotting many graphs on top of each other,
but instead of going through a range of E, keep E constant and go through a range of radii
(1.0m to 5.0m). The suitable altered finite reactor program produces the output in figure 13.

Figure 13 : k against f:m for a range of radii (R)

While the plots are a little rough (as a consequence of drastically cutting down on the number
of neutron lives per reactor simulation in order for the program to run in a reasonable time),
they show the general behaviour changes as radius increases. For the lower reactor sizes, a
little extra radius makes big difference to the final result, but for the higher reactor sizes, the
system saturates and there is no point in further increasing the reactor size. As we would
expect, the graph tends to it's infinite reactor equivalent at high R (the above graph is for
E=5), as indeed it must in order for the finite/infinite programs to be consistant.

To better see what is going on, we can alter the program so that it plots the performance (k)
against radius (R). Once this is implemented, the results for the optimum reactor conditions
(from the infinite reactor, ie giving k=1) are as in figure 14 (overleaf).

Page 18

0

0.5

1

1.5

0.001 0.0022 0.0034 0.0046 0.0058 0.007 0.0082 0.0094

P
er

fo
rm

an
ce

 (
k)

Fuel/moderator fraction (f:m)

R=1.0m

R=5.0m

Figure 14 : k against R for the optimum infinite reactor performance

As suggested before, the gradient at low R is high, but tails off to a plateau approaching the
k=1 level asymptotically as the radius tends to infinity, thus this result is consistent with the
infinite reactor result.

Page 19

0

0.5

1

1.5

0 1 2 3 4 5

R
ea

ct
or

 p
er

fo
rm

an
ce

 (
k)

Reactor radius (R)

Discussion and Conclusions

While the basic infinite reactor simulation make a large number of assumptions and
simplifications, it's results appear to make good physical sense, and so we conclude that
given a sufficiently large homogeneous reactor, we need to set the fuel:moderator ratio to
2.484 uranium per 1000 carbon and the enrichment to 1.976 times the natural level (ie
1.976×1/138 = 0.014, or 1.4 U235 for every 100 u238) for the reactor to run efficently at k=1 (with
an error of 3.1% in the first figure and of 2.3% in the second). Without new theoretical
information, physical experiments would be required in order to verify these conclusions.

When considering the effect that the radius has on reactor performance, the sitation is best
describe by the output in figure 14. However, a rough rule as to how the radius affects the
performance can be read off data at various points such that:

For 50% performance (k=0.5), R needs to be around 1.0m,
for 75% performance (k=0.75), R needs to be around 1.5m,
for 90% performance (k=0.9), R needs to be around 2.5m, and,
for 95% performance (k=0.95), R needs to be around 3.5m.

In order to be more accurate about the effect of the radius, it would be neccessary to know
the limitations on radius (ie what kind of radius is required/reasonable etc). Once this is know,
it would be possible to work back and see what level of enrichment is required to get a reactor
of the prescribed size to perform efficiently such that k=1. Thus, from the information given in
this report, it would be possible to give reasonable estimated of the atomic proportions and
overall size neccessary to make a nuclear reactor of the carbon/uranium type efficient as well
as self-sufficent, so that we get the most out of it whilst minimising the cost due to enrichment
of the fuel. However, this would require system specific information and so does not come
within the scope of these experiments.

Page 20

Appendix A : Data needed for the simulation

Densities: graphite 1.63×103 kg m-3

uranium 19.05×103 kg m-3

Atomic masses: graphite 12.01
uranium 238.07

Natural uranium fraction (before enrichment): U235/U238 = 1/138

Enriched uranium fraction (with enrichment E): U235/U238 = E × 1/138

Cross sections [1 barn = 10-28 sq m]

For thermal neutrons (velocity ~2200 m/s, energy ~0.025 eV):

Graphite
ss = 4.8 barns sa = 3.2×10-3 barns

Uranium, isotope U235

ss = 10 barns sf = 582 barns sa = 694 barns †
Uranium, isotope U238

ss = 8.3 barns sa = 2.73 barns

Number of neutrons released per fission = 2.47

[† includes absorption leading to fission]

Resonant absorption by uranium 238

Ss/N238 8.3 50 100 300 500 800 1000 2000 ¥
sa 0.601 1.066 1.506 2.493 3.096 3.754 4.138 5.400 15.936

Page 21

Appendix B (part 1) : Infinite reactor simulation program

 Program React1
C Simulation of many neutron lives in an infinite homogeneous reactor.
C (using survival biasing)
C
C Aim: To investigate how the yield factor k depends on the
C fuel/moderator fraction and the enrichment factor.
C
C v1:28/2/95: By AN Jackson.
C
 Implicit double precision (a-h,j-z)
 REAL ran1
 Integer*2 ikey
C Defining constant parameters:
 idum=-1
C Number of neutron lives to run:
 iN=5000
C Quality factors:
 NatFuelFrac=1.0d0/138.0d0
 ModFuelFrac=1000.0d0
 FuelModFrac=1.0d0/ModFuelFrac
 EnrichFact=1.25d0
 EFLow=1.0
 EFHigh=10.0
 iEFStep=18
 PureFuelFrac=EnrichFact*NatFuelFrac
 Neutronperfission=2.47d0
 FMFLow=1.0d0/1000.0d0
 FMFHigh=1.0d0/100.0d0
 iFMFStep=30
C Energy parameters:
 ThermSwitch=0.025d0
 MTSwitch=ThermSwitch/1.0d6
C Densities:
 DensC=1.65d3
 DensU=19.05d3
C Atomic weight:
 AtWC=12.01d0
 AtWNatU=238.07d0
C Conversion factors:
 barn=1.0d-28
C Cross-Sections (all converted to metres).
C thermal levels first:
 tSig12s=4.8*barn
 tSig12f=0.0
 tSig12a=3.2d-3*barn
 tSig235s=10*barn
 tSig235f=582*barn
 tSig235a=694*barn
 tSig238s=8.3*barn
 tSig238f=0.0
 tSig238a=2.73*barn
 tSigAbs=0.0
 tSigFiss=0.0
 SigScat=0.0
 SigAbs=0.0
 Sig238a=0.0
c
C Prompt/Frontend for user:
 WRITE(*,*)’Infinite Homogeneous Nuclear Reactor Simulation’
 WRITE(*,*)’~~~’
 WRITE(*,*)’ ‘
 WRITE(*,*)’Evaluate the effect of the fuel/moderator’
 WRITE(*,*)’fraction and the enrichment factor on the’
 WRITE(*,*)’yield of the reactor.’
 WRITE(*,*)’ ‘
 WRITE(*,*)’Press `p` to print the graph, post-plotting.’
 WRITE(*,*)’ ‘
 WRITE(*,*)’Press any key to continue...’
 CALL GET_KEY@(ikey)
C
C Open output file:
 OPEN (UNIT=66,FILE=’REACT.OUT’,STATUS=’UNKNOWN’)

Page 22

 WRITE(66,*) ‘# Full data output for infinite reactor.’
 WRITE(66,*) ‘ ‘
C
C Call up graphics routines:
 CALL hprepit
 CALL hdefwin(1,REAL(FMFLow),REAL(FMFHigh),0.0,1.5,
 +200,500,50,300)
 CALL hsetwin(1)
 CALL hsetcol(7)
 CALL hplotax(’Fuel:moderator fraction.’,’k’)
 CALL hsetcol(1)
C
C Loop over enrich factor:
 DO iEF=0,iEFStep
 EnrichFact=EFLow+(EFHigh-EFLow)*iEF/iEFStep
 CALL hmoveto(0.0,0.0)
 WRITE(66,*) ‘ ‘
C
C Loop over FuelMod values
 DO iFMF=0,iFMFStep
 FuelModFrac=FMFLow+(FMFHigh-FMFLow)*iFMF/iFMFStep
C
C Calculate the variable parameters.
C Molecular Densities:
 PureFuelFrac=EnrichFact*NatFuelFrac
 N12=(0.6025d27)*DensC/AtWC
 Nu=FuelModFrac*N12
 N235=PureFuelFrac*Nu
 N238=(1.0d0-PureFuelFrac)*Nu
C Cross-sections:
 SigScat=N12*tSig12s+N235*tSig235s+N238*tsig238s
 tmp=(SigScat/N238)/barn
C Interpolate through the table for Siga:
 IF(tmp.LE.8.3) Siga=0.601
 IF(tmp.GT.8.3 .AND. tmp.LE.50.0)
 +Siga=dinterp(tmp,8.3,50.0,0.601,1.066)
 IF(tmp.GT.50.0 .AND. tmp.LE.100.0)
 +Siga=dinterp(tmp,50.0,100.0,1.066,1.506)
 IF(tmp.GT.100.0 .AND. tmp.LE.300.0)
 +Siga=dinterp(tmp,100.0,300.0,1.506,2.493)
 IF(tmp.GT.300.0 .AND. tmp.LE.500.0)
 +Siga=dinterp(tmp,300.0,500.0,2.493,3.096)
 IF(tmp.GT.500.0 .AND. tmp.LE.800.0)
 +Siga=dinterp(tmp,500.0,800.0,3.096,3.754)
 IF(tmp.GT.800.0 .AND. tmp.LE.1000.0)
 +Siga=dinterp(tmp,800.0,1000.0,3.754,4.138)
 IF(tmp.GT.1000.0 .AND. tmp.LE.2000.0)
 +Siga=dinterp(tmp,1000.0,2000.0,4.138,5.400)
 IF(tmp.GT.2000.0) THEN
 Siga=dinterp(1.0/tmp,1.0/2000.0,0.0,5.400,15.936)
 END IF
 Sig238a=Siga*barn
 tSigAbs=N12*tSig12a+N238*tSig238a+N235*tSig235a
 tSigFiss=N235*tSig235f
 SigAbs=N12*tSig12a+N238*Sig238a
C Probabilities:
 AbsPrb=SigAbs/(SigScat+SigAbs)
 ScatPrb=SigScat/(SigScat+SigAbs)
 tAbsUPrb=(N238*tSig238a+N235*tSig235a)/tSigAbs
 FissPrb=tSigFiss/tSigAbs
C Collision calculation outside:
 AtWCol=AtWC
 ERecip=1.0d0/((1.0d0+AtWCol)*(1.0d0+AtWCol))
 ESum=(1.0d0-AtWCol-AtWCol+AtWCol*AtWCol)*ERecip
 ERatio=(4.0d0*AtWCol)*ERecip
C Correct for small fraction that is not moderator:
 ESum=(1+FuelModFrac)*ESum
 ERatio=(1+FuelModFrac)*ERatio
C
C MAIN LOOP: Over iN neutron lives:
 DO i=1,iN
c Get energy & set initial weighting:
 Energy=disdev(idum)
 weight=1.0d0
c Loop over one neutron life.

Page 23

 666 weight=weight*ScatPrb
 Energy=Energy*(ESum+ERatio*RAN1(idum))
 IF (Energy.GT.MTSwitch) GOTO 666
 AbsLow=AbsLow+weight
 END DO
 AbsHigh=iN-AbsLow
 Fissions=FissPrb*AbsLow
 k=Fissions*Neutronperfissions/iN
 CALL hlineto(REAL(FuelModFrac),REAL(k))
 WRITE(66,*) EnrichFact,FuelModFrac,k
 END DO
 END DO
C Clean up and exit
 CLOSE (UNIT=66)
 CALL GET_KEY@(ikey)
 IF (ikey.EQ.80 .OR. ikey.EQ.112) CALL hprintgs
 CALL hfinish
 WRITE(*,*)’Best fuel/moderator fraction: ‘,BestFMF
 END
c
 double precision function dinterp(X,Xl,Xh,Yl,Yh)
 double precision X
 real Xl,Xh,Yl,Yh
 dinterp=((X-Xl)/(Xh-Xl))*(Yh-Yl)+Yl
 return
 end

Page 24

Appendix B (part 2) : The spherical finite reactor program

 Program React2
C Simulation of many neutron lives in a finite homogeneous reactor.
C
C Aim: To investigate how the yield factor k depends on the
C fuel/moderator fraction and the enrichment factor and
C on the reactor radius.
C
C v1:12/3/95: By AN Jackson.
C
 Implicit double precision (a-h,j-z)
 REAL ran1
 Integer*2 ikey
C Defining parameters:
 idum=-1
C Number of neutron lives to run:
 iN=500
C Size of reactor(m):
 Rad=1.0
 RadHigh=5.25
 RadLow=0.25
 iRadStep=10
C Quality factors:
 NatFuelFrac=1.0d0/138.0d0
 ModFuelFrac=1000.0d0
 FuelModFrac=1.0d0/ModFuelFrac
 EnrichFact=1.00d0
 EFLow=1.0
 EFHigh=10.0
 iEFStep=9
 PureFuelFrac=EnrichFact*NatFuelFrac
 Neutronperfission=2.47d0
 FMFLow=0.001d0
 FMFHigh=0.01d0
 iFMFStep=15
C Energy parameters:
 ThermSwitch=0.025d0
 MTSwitch=ThermSwitch/1.0d6
 Energy=0.0d0
 ERatio=1.0d0
C Densities:
 DensC=1.65d3
 DensU=19.05d3
C Atomic weight:
 AtWC=12.01d0
 AtWNatU=238.07d0
C Conversion factors:
 barn=1.0d-28
C Cross-Sections (all converted to metres).
C thermal levels first:
 tSig12s=4.8*barn
 tSig12f=0.0
 tSig12a=3.2d-3*barn
 tSig235s=10*barn
 tSig235f=582*barn
 tSig235a=694*barn
 tSig238s=8.3*barn
 tSig238f=0.0
 tSig238a=2.73*barn
 tSigAbs=0.0
 tSigFiss=0.0
 SigScat=0.0
 SigAbs=0.0
 Sig238a=0.0
c
C Prompt/Frontend for user:
 WRITE(*,*)’Infinite Homogeneous Nuclear Reactor Simulation’
 WRITE(*,*)’~~~’
 WRITE(*,*)’ ‘
 WRITE(*,*)’Evaluate the effect of the fuel/moderator’
 WRITE(*,*)’fraction and the enrichment factor on the’
 WRITE(*,*)’yield of the reactor.’
 WRITE(*,*)’ ‘

Page 25

 WRITE(*,*)’Press `p` to print the graph, post-plotting.’
 WRITE(*,*)’ ‘
 WRITE(*,*)’Press any key to continue...’
 CALL GET_KEY@(ikey)
 WRITE(*,*) ‘ ‘
 WRITE(*,*) ‘Calculating...’
C
C Open output file:
 OPEN (UNIT=66,FILE=’REACT.OUT’,STATUS=’UNKNOWN’)
C
C Call up graphics routines:
 CALL hprepit
 CALL hdefwin(1,REAL(RadLow),REAL(RadHigh),0.0,1.5,
 +200,500,50,300)
 CALL hsetwin(1)
 CALL hsetcol(7)
 CALL hplotax(’Reactor radius ‘,’Best k ‘)
 CALL hsetcol(1)
C
C Loop over radius range:
 DO iRad=0,iRadStep
 Rad=RadLow+(RadHigh-RadLow)*iRad/iRadStep
 WRITE(66,*) ‘ ‘
C
C Calculate the rest of the parameters.
C Parameters to count up success/failures:
 AbsHigh=0.0d0
 AbsLow=0.0d0
 Fissions=0.0d0
C Molecular Densities:
 PureFuelFrac=EnrichFact*NatFuelFrac
 N12=(0.6025d27)*DensC/AtWC
 Nu=FuelModFrac*N12
 N235=PureFuelFrac*Nu
 N238=(1.0d0-PureFuelFrac)*Nu
C Cross-sections:
 SigScat=N12*tSig12s+N235*tSig235s+N238*tsig238s
 ScatPrbA=N12*tSig12s/SigScat
 ScatPrbB=ScatPrbA+(N235*tSig235s)/SigScat
 tmp=(SigScat/N238)/barn
C Interpolate through the table for Siga:
 IF(tmp.LE.8.3) Siga=0.601
 IF(tmp.GT.8.3 .AND. tmp.LE.50.0)
 +Siga=dinterp(tmp,8.3,50.0,0.601,1.066)
 IF(tmp.GT.50.0 .AND. tmp.LE.100.0)
 +Siga=dinterp(tmp,50.0,100.0,1.066,1.506)
 IF(tmp.GT.100.0 .AND. tmp.LE.300.0)
 +Siga=dinterp(tmp,100.0,300.0,1.506,2.493)
 IF(tmp.GT.300.0 .AND. tmp.LE.500.0)
 +Siga=dinterp(tmp,300.0,500.0,2.493,3.096)
 IF(tmp.GT.500.0 .AND. tmp.LE.800.0)
 +Siga=dinterp(tmp,500.0,800.0,3.096,3.754)
 IF(tmp.GT.800.0 .AND. tmp.LE.1000.0)
 +Siga=dinterp(tmp,800.0,1000.0,3.754,4.138)
 IF(tmp.GT.1000.0 .AND. tmp.LE.2000.0)
 +Siga=dinterp(tmp,1000.0,2000.0,4.138,5.400)
 IF(tmp.GT.2000.0) THEN
 Siga=dinterp(1.0/tmp,1.0/2000.0,0.0,5.400,15.936)
 END IF
 Sig238a=Siga*barn
 tSigAbs=N12*tSig12a+N238*tSig238a+N235*tSig235a
 tSigFiss=N235*tSig235f
 SigAbs=N12*tSig12a+N238*Sig238a
 MeanPath=1.0d0/(SigAbs+SigScat)
 tMeanPath=1.0d0/(tSigAbs+SigScat)
C Probabilities:
 AbsPrb=SigAbs/(SigScat+SigAbs)
 tAbsPrb=tSigAbs/(SigScat+tSigAbs)
 ScatPrb=SigScat/(SigScat+SigAbs)
c tAbsUPrb=(N238*tSig238a+N235*tSig235a)/tSigAbs
 FissPrb=tSigFiss/tSigAbs
C
C MAIN LOOP: Over iN neutron lives:
 DO i=1,iN
c Get energy & set initial weighting:

Page 26

 Energy=disdev(idum)
 RadPos=dendev(idum)*(Rad+0.71*MeanPath)/3.141592654d0
 NeuCost=COS(6.283185307d0*RAN1(idum))
 weight=1.0d0
c Loop over one neutron life, above thermal energies first.
 666 IF (Energy.GT.MTSwitch .AND. RadPos.LE.Rad) THEN
 weight=weight*ScatPrb
 costheta=-1.0d0+2.0d0*RAN1(idum)
 l=-MeanPath*LOG(RAN1(idum))
 IF (l.GT.0.0d0) THEN
c Alter radial position and angle through translation:
 NewRadPos=DSQRT(RadPos*RadPos+l*l+2.0*RadPos*l*NeuCost)
 NeuCost=(NewRadPos*NewRadPos+l*l-RadPos*RadPos)
 +/(2.0d0*NewRadPos*l)
 RadPos=NewRadPos
c Alter neutron velocity angle as in a collision:
 cosphi=DCOS(6.283185307d0*RAN1(idum))
 sintheta=DSIN(DACOS(costheta))
 NeuSint=DSIN(DACOS(NeuCost))
 NeuCost=(1.0+AtWCol*costheta)*NeuCost+
 +AtWCol*sintheta*NeuSint*cosphi
 Efactor=1.0+2.0*AtWCol*costheta+AtWCol*AtwCol
 NeuCost=NeuCost/DSQRT(Efactor)
 Energy=Energy*Efactor/((1.0+AtwCol)*(1.0+AtWCol))
 END IF
 GOTO 666
 END IF
 AbsLow=AbsLow+weight
c Below thermal energies:
 667 IF (Energy.LE.MTSwitch .AND. RadPos.LE.Rad) THEN
 branch=RAN1(idum)
 IF (branch.LE.tAbsPrb) THEN
c Neutron absorbed, weight fission chance and end calc:
 Fissions=Fissions+weight*FissPrb
c End calculation by throwing neutron out of the reactor:
 RadPos=2.0*Rad
 ELSE
c Scattered, calculate the movement through reactor:
 costheta=-1.0d0+2.0d0*RAN1(idum)
 l=-MeanPath*LOG(RAN1(idum))
 IF (l.GT.0.0d0) THEN
c Alter radial position and angle through translation:
 NewRadPos=DSQRT(RadPos*RadPos+l*l+2.0*RadPos*l*NeuCost)
 NeuCost=(NewRadPos*NewRadPos+l*l-RadPos*RadPos)
 +/(2.0*NewRadPos*l)
 RadPos=NewRadPos
c Alter neutron velocity angle as in a collision:
 cosphi=DCOS(6.283185307d0*RAN1(idum))
 sintheta=DSIN(DACOS(costheta))
 NeuSint=DSIN(DACOS(NeuCost))
 NeuCost=(1.0+AtWCol*costheta)*NeuCost+
 +AtWCol*sintheta*NeuSint*cosphi
 Efactor=1.0+2.0*AtWCol*costheta+AtWCol*AtwCol
 NeuCost=NeuCost/DSQRT(Efactor)
 END IF
 END IF
 GOTO 667
 END IF
 END DO
 n=Neutronperfission
 e=Fissions/iN
 k=n*e
c End of radial loop:
 CALL hlineto(REAL(Rad),REAL(highk))
 WRITE(66,*) Rad,k
 END DO
C Clean up and exit
 CLOSE (UNIT=66)
 CALL GET_KEY@(ikey)
 IF (ikey.EQ.80 .OR. ikey.EQ.112) CALL hprintgs
 CALL hfinish
 WRITE(*,*)’Best fuel/moderator fraction: ‘,BestFMF
 END

Page 27

Appendix B (part 3) : FORTRAN code provided to support the experiment

 function ran1(idum)
c Returns a uniform deviate between 0.0 and 1.0. Set IDUM
c to any negative value to initialise or reinintialise
c the sequence
c
 dimension r(97)
 parameter (m1=259200,ia1=7141,ic1=54773,rm1=1.0/m1)
 parameter (m2=134456,ia2=8121,ic2=28411,rm2=1.0/m2)
 parameter (m3=243000,ia3=4561,ic3=51349)
 save r,iff,ix1,ix2,ix3
 data iff /0/
c Initialise on first call even if IDUM is not zero
 if (idum.lt.0.or.iff.eq.0) then
 iff=1
c Seed the first routine
 ix1=mod((ic1-idum),m1)
 ix1=mod((ia1*ix1+ic1),m1)
c and use it to seed the second
 ix2=mod(ix1,m2)
 ix1=mod((ia1*ix1+ic1),m1)
c and the third routines
 ix3=mod(ix1,m3)
c Fill the table with sequential uniform deviates generated
c by the first two routines
 do 11 j=1,97
 ix1=mod((ia1*ix1+ic1),m1)
 ix2=mod((ia2*ix2+ic2),m2)
c Low and high order pieces combined here
 r(j)=(float(ix1)+float(ix2)*rm2)*rm1
 11 continue
 idum=1
 endif
c Except when initialising this is where we start.
c Generate the next number for each sequence
 ix1=mod((ia1*ix1+ic1),m1)
 ix2=mod((ia2*ix2+ic2),m2)
 ix3=mod((ia3*ix3+ic3),m3)
c Use the third sequence to get an integer between 1 and 97
 j=1+(97*ix3)/m3
 if (j.gt.97.or.j.lt.1) write (*,*) ‘ failure in j’
c Return that table entry
 ran1=r(j)
c and refill it
 r(j)=(float(ix1)+float(ix2)*rm2)*rm1
 return
 end
C
C
 double precision function disdev(idum)
c
c Calculates random deviates to the neutron fission product
c energy probability distribution:
c N(E)=C*SINH(SQRT(2E))*EXP(-E)
c
c The deviate is obtained by the rejection method using
c an exponential deviate as comparison
c
c Calculate the exponential deviate
 1 y=-alog(ran1(idum))
c The scaling factor 2.0464 is chosen to be the most
c efficient value compatable with the ratio function f always
c being less than 1.
 x=2.0464*y
c Form comparison function
 f=0.76648*sinh(sqrt(x+x))*exp(-0.51134*x)
c Reject if comparison function less than uniform deviate
 if (f.lt.ran1(idum)) go to 1
 disdev=x
 return
 end
 double precision function dendev(idum)

Page 28

c
c Calculates random deviates to the neutron fission product
c initial density probability distribution:
c N(R)=C*SIN(R)/R
c in the range 0 to PI
c
c The deviate is obtained by the rejection method using
c a Lorentzian deviate as comparison over a restricted range
c
c Calculate the Lorentzian deviate limited in range
 1 y=-0.334750207+0.578242494*ran1(idum)
 y=tan(3.141592654*y)
c Shift mean to peak of density distribution
c The scaling factor 1.159294016 is chosen to be the smallest
c value compatable with the ratio function f always being
c less than 1.
 x=1.159294016*y+2.028757838
c Reject if value negative or value greater than PI
 if ((x.lt.0.0).or.(x.gt.3.141592654)) go to 1
c Form comparison function
 f=0.425183296*x*sin(x)*(1.0+y*y)
c Reject if comparison function greater than uniform deviate
 if (f.lt.ran1(idum)) go to 1
 dendev=x
 return
 end
8

Page 29

