Simulation:
A Bluffer's Guide.

A brief journey into the r le, form and
limitations of computer simulation
in condensed matter physics.

(distinctly non-exhaustive, rather subjective and
not a lot of quantum mechanics either.)

Also, an excuse for using
clip-art gratuitously.




Why Simulate?

E(d) = 3 S vy  THE THEORY’S JUST
N TOO HARD!
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Or if you want a second opinion, why not
ask your friendly neighbourhood coder.




“Fae. A Spectrum of Computational Physics

Most definitely both arbitrary and non-exhaustive.

Symbolic Algebra

Numerical Analysis

Continuum Physics

Lattice Models

Pseudo-particles

Classical Particles

Quantum Systems

Particle Physics

Nasty maths done analytically by the machine
Maple et al

Numerical integration/differentiation [ ]
Matrix diagonalization/eigenstates/etcetera

Heat Flow Finite Difference & Finite Element

Fluid Dynamics
Lattice Gases & Lattice-Boltzmann

Ising Models

Polymers Dissapative
Complex fluids Particle Dynamics
Cosmological Evolution
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Hard Spheres
Lennard-Jones

Electron distributions about nuclei
Density Functional Theory
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Quantum field theory & Lattice QCD



Overall Aims

Given some model many-body system.
(A finite set of objects in some space/geometry
with some rules for how they interact)

We wish to predict observable properties of a real system.
(Eg bulk properties an effectively infinite number of objects).

Equilibrium Properties
Free-energies, phase behaviour, compressibility, specific heat...
For T = OK, calculating the energy is enough.

For T > OK, we need lots of microstates.

Dynamic Properties
Relaxation times, diffusion times... &

Needs lots of microstates.



The Simulation Arena

+1/+1]+1/+1 Characterizing the System
+1[+1 Hard Spheres
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+1 Ising Model
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Periodic boundary conditions

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 +1 41 +1 +1 +1 +1 +1 +1




External influences
Microcanonical ensemble OR

Fix temperature Fix pressure Fix chemical potential

Using appropriate statistical mechanics rules.

Dimensionless Units
Scale out real units, and capture the physics.

Hard Spheres:
Given N, only the ratio between radius and volume matters.
r}/V : ie the density, r*.

Ising Model:
The ratio of the interaction energy to the thermal energy matters:
W/ksT = 1/T*.



Molecular Dynamics

Eg Evolve positions of particles under Newton’s Laws.
N |
d AN Cdt T N

1) Calculate the forces:

2) Update the velocities:

v(t + At) = v(t) + alr ’ ‘

3) Update the positions:
x(t+ A) = x(t)+ v .

4)Repeat 1,2and 3. e

There are more accurate ways!
Getting fixed temperature/pressure etc requires mild bludgeoning.



Monte Carlo Method

In 1 Dimension;
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In Two Dimensions:
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Can we do this for many-dimension
integrations over phase space?

Z(N,V,T) = _ Ude} ! Umde € p[ E/Sg;})}




Monte Carlo In Statistical Mechanics:
Eg In the canonical ensemble.

Generate microstates at random. B 1
Estimate energy using... E =~ = 2 E. exp [-BE;]
noi -
This doesn’t work!

9(E)
Eg Ising Model:
Tend to generate hot
configurations.
Low T HighT

energy

Eg Hard-Spheres:
Doesn t work at high densities.

Can we generate the right (high Boltzmann weight)
configurations all the time, instead of waiting for them?



Markov Chains:
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OK, but we can t accept all moves.
How do we decide whether to accept a trial move?
Convergence:
measurement 1 measurement 2 measurement 3
— >

system evolving with time

Can show that microscopic reversibility ( detailed balance ) is a
sufficient condition to ensure convergence.

P@) P(i — j) = PGPy — )

We need an algorithm that satisfies this condition and will sample
with the Boltzmann distribution.



energy

AN
Importance Sampling: ‘@_‘
Moves to lower energies are ALWAYS accepted.

Moves up are accepted sometimes...

P(i toj) 4

1.0

~ low E

microstates Ve DE +tve
P(i — j) = min[ 1.0, exp(-B8(E; — E}) ]

, 1
P(i) = - exp(-fE)
Putting these into the detailed balance condition:
exp(—-BE;) x 1.0 = exp (—ﬁEj) x exp(—B(E; — Ej))
This generates a sequence of Boltzmann distributed microstates.

n
Estimate observables like this: E = 1 2 E,
n =1



Limitations: Finite System Size
Example: 2D sticky spheres:
N =25 N = 5000

One should always examine a range of system sizes.

A wealth of literature exists on finite size effects
and theory to cope with them ( finite size scaling theory ).



Limitations: Finite Simulation Time /@\

Example: Ising model at low temperature: \/if/

15x15 spins -- B = 0.55 -- 1.0 x 10° MCS
20 T | T | T | T

0

M
With MC is that you can fudge things legally.
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/
)@N Beating The System
N Changing Rooms

Normal Monte Carlo Ensemble Switching
Room 1 Room 2 Room 1 Room 2

What | do:

gateway states

M<O0 M=0 M>0



Final Remarks...

Notable Omissions:
Stability of algorithms.
Finite precision problems.
Estimating accuracy under Monte Carlo,
(and about a million other details).

Quantum Mechanics:
DFT makes calculations 10-100 times harder.

Supercomputing:
Various tricks and cunning techniques.

Makes simulation 10-100 faster. Z’)
And hopefully you don t grj
feel like this. /:




Sight: BibTeX Citation Management Program

EX Sight: myrefs/bib

ﬂﬂ | acldnew| delete|

E((x1) = ref |\d|elADB199?:Ial1io&5witch} | type Ianlde ﬂ
ZINV.T) = 13_‘1 ]:m auther | AD Bruce and NB Wilding and GJ Ackland | journal | Physical Review Letters
11 ]
title | Free Energy of Crystalline Solids: A Latliae—Swihi year ‘ 1997
manth nate | The first lattice-switch paper
number [ 16
volume | 79 ‘

pages ‘ 3002--3005 |

|
|
|
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your BibTeX citation file in a "nice" way.

On Unix (at least), it makes it very easy to insert the right \cite{}.

Written in Java - can run on any kind of machine.



