Simulation: A Bluffer's Guide.

A brief journey into the rôle, form and limitations of computer simulation in condensed matter physics.

F

(distinctly non-exhaustive, rather subjective and not a lot of quantum mechanics either.)

An attempt to place my work into context.

Also, an excuse for using clip-art gratuitously.

Why Simulate?

Or if you want a second opinion, why not ask your friendly neighbourhood coder.

She A Spectrum of Computational Physics

Most definitely both arbitrary and non-exhaustive.

4	Symbolic Algebra	Nasty maths done analytically by the machine
		Maple et al
	Numerical Analysis	Numerical integration/differentiation Matrix diagonalization/eigenstates/etcetera
	Continuum Physics	Finite Difference & Finite Element Fluid Dynamics Lattice Gases & Lattice-Boltzmann
	Lattice Models	Ising Models ≤
	Pseudo-particles	PolymersDissapativeComplex fluidsParticle DynamicsCosmological EvolutionMolec
	Classical Particles	Hard Spheres Lennard-Jones
	Quantum Systems	Electron distributions about nuclei Density Functional Theory
	Particle Physics	Quantum field theory & Lattice QCD

Overall Aims

Given some model many-body system. (A finite set of objects in some space/geometry with some rules for how they interact)

We wish to predict observable properties of a real system. (*Eg bulk properties an effectively infinite number of objects*).

Equilibrium Properties Free-energies, phase behaviour, compressibility, specific heat... For T = 0K, calculating the energy is enough. For T > 0K, we need lots of microstates.

Dynamic Properties Relaxation times, diffusion times... Needs lots of microstates.

+1 +1 +1 +1 -1 -1 +1 +1 -1 -1 +1 -1 -1 -1 -1 +1

Periodic boundary conditions

+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1
-1	-1	+1	+1	-1	-1	+1	+1	-1	-1	+1	+1
-1	-1	+1	-1	-1	-1	+1	-1	-1	-1	+1	-1
-1	-1	-1	+1	-1	-1	-1	+1	-1	-1	-1	+1
+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1
-1	-1	+1	+1	-1	-1	+1	+1	-1	-1	+1	+1
-1	-1	+1	-1	-1	-1	+1	-1	-1	-1	+1	-1
-1	-1	-1	+1	-1	-1	-1	+1	-1	-1	-1	+1
+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1
-1	-1	+1	+1	-1	-1	+1	+1	-1	-1	+1	+1
-1	-1	+1	-1	-1	-1	+1	-1	-1	-1	+1	-1
-1	-1	-1	+1	-1	-1	-1	+1	-1	-1	-1	+1

Using appropriate statistical mechanics rules.

Dimensionless Units

Scale out "real" units, and capture the physics.

Hard Spheres: Given N, only the ratio between radius and volume matters. r^{3}/V : ie the density, p^{*} .

Ising Model: The ratio of the interaction energy to the thermal energy matters: $J/k_BT = 1/T^*$.

There are more accurate ways! Getting fixed temperature/pressure etc requires mild bludgeoning.

$$\left[e.g. \ \frac{24}{33} = 2.9\right]$$

Can we do this for many-dimension integrations over phase space?

$$Z(N, V, T) = \prod_{i=1}^{3N} \left[\int_{-\infty}^{+\infty} d\dot{x}_i \right] \prod_{i=1}^{3N} \left[\int_{-\infty}^{+\infty} dx_i \right] \exp \left[-\frac{E(\{x\})}{k_B T} \right]$$

Monte Carlo In Statistical Mechanics: Eg In the canonical ensemble.

Eg Hard-Spheres: Doesn't work at high densities.

Can we generate the right (high Boltzmann weight) configurations all the time, instead of waiting for them?

Markov Chains:

time

OK, but we can't accept all moves. How do we decide whether to accept a trial move?

Convergence:

equlibrate measurement ?		measurement 2	measurement 3			
system evolving with time						
Can show that microscopic reversibility ('detailed balance') is a						

sufficient condition to ensure convergence.

$$P(i) P(i \rightarrow j) = P(j) P(j \rightarrow i)$$

We need an algorithm that satisfies this condition and will sample with the Boltzmann distribution.

Limitations: Finite System Size

Example: 2D sticky spheres:

N = 25

N = 5000

One should always examine a range of system sizes.

A wealth of literature exists on finite <u>size effects</u> and theory to cope with them ('finite size scaling theory').

Final Remarks...

Notable Omissions: Stability of algorithms. Finite precision problems. Estimating accuracy under Monte Carlo, (and about a million other details).

Quantum Mechanics: DFT makes calculations 10-100 times harder.

Supercomputing: Various tricks and cunning techniques. Makes simulation 10-100 faster.

And hopefully you don't feel like this.

Sight: BibTeX Citation Management Program

	Sight: myrefs/bib						
$E({x}) =$	nət	\cite(ADB1997:lattice-switch)	iype	artick:			
$Z(N, V, T) = \prod_{i=1}^{M} \left[\int_{-\infty}^{+\infty} d\hat{x}_i \right]$	author	AD Bruce and NB Wilding and GJ Ackland	journal	Physical Review Letters			
1-10-2	title	Free Energy of Crystalline Solids: A Lattice-Swite	year	1997			
	manth		note	The first lattice-switch paper			
	number	16	pages	30023005			
	volume	79					
V ES		e e a provinsi e e a provinsi e e a provinsi e e provinsi e					

Allows you to edit, add and delete entries in your BibTeX citation file in a "nice" way.

On Unix (at least), it makes it very easy to insert the right $cite{}$.

Written in Java - can run on any kind of machine.