Structural Phase Behaviour...
...via Monte Carlo Techniques
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Introduction

Predicting crystal structure remains a challenge, even for our
simplest models of matter. This work concerns a new technique,
Lattice—SwitciMonte Carlo 22, which allows different structures
to be compared directly.

The Hard Sphere Solid

As the density of a system of hard-spheres is increased, the
system undergoes an entropy-driven first-order phase trans
from a fluid to an ordered crystalline phase.

low density Hexagonal O_melnmoxm.a

high density [oN

flui random close
uid packing
(metastable)

crystal

Is the equilibrium crystal structure face-centered cubic or
hexagonal close-packed? To find out, we must calculate the
entropy difference between these two structures.

Ensemble Switching

Calculating which structure has the greatest entropy via a Monte
Carlo simulation is analogous to using a random walker to
determine which of two rooms is the larger.

A normal Monte Carlo simulation will get stuck in one room, and
so can tell you nothing about the relative sizes of the rooms.
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An ensemble switch would allow the walker to switch (teleport’)
back and forth between the Room 1 and Room 2 ensembles, via
a gateway’ in each room. The larger room is then simply the
room that the walker spends the most time in.

Ensemble Switching
Room 1 Room 2

A lattice-switch is an ensemble switch which allows a Monte
Carlo simulation to visit the ensembles associated with two
different crystalline structures. The structure with the greatest
entropy is the one the simulation spends the most time in (the
most probable phase).

2

Lattice —Switch Monte Carlo

We need to design a mechanism by which a Monte Carlo
simulation may switch between the fcc and hcp ensembles.

We first re-express the position of each sphere in
terms of a lattice-site vector, and a displacement
from that site:
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We can now define the lattice-switch as a Monte Carlo move
where we attempt to swap one set of lattice site vectors (R) for
another, while keeping the displacements from those sites ()
fixed. There are a large number of possible lattice-site
mappings. The mapping illustrated below, translating pairs of
planes together, was chosen due to it’s simplicity and efficiency.
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The lattice-switch move is usually rejected (as it would cause
spheres to overlap). To overcome this problem, we first
characterize the route between the phases via an order
parameter M :

the cost’ of m
switching to fcc*

the cost' of §
switching to :8“._
The cost’ of the switch can be measured in terms of the number
of overlaps that it would create. Thus, while the simulation is in
fcc, M is positive, and while in hep it is negative. The switch can
only be performed when M = 0 (i.e. in the gateway states).
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The simulation is then biassed so that the entire range of M is
visited. We measure the biassed probability distribution of M ,
and remove the bias to recover the true P(M ). The phase with
the greatest entropy will have the largest of the two peaks in the
P(M ) distribution, and the entropy difference can be calculated
from the ratio of the weights of the two peaks.
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Hard —Sphere Results
The first graph shows the measured P(M ) for a system of 1728
hard spheres (at 77.78% of the maximum close-packed density).
The fcc peak is clearly larger, and so fcc has the greater entropy.
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Combining our results? with those of others®4, we find that the
entropy difference favours fcc for all densities up to close-
packing (where S - S, = 125(3) 10° NKksg).

Simulations have also been performed in the constant-pressure
ensemble, and have shown that the Gibbs free-energy difference
between the structures is numerically equal to the entropy
difference to within the (high) accuracy of our results.

Various different lattice-site mappings have been investigated, as
well as the nature of the gateway states. This has lead to a
clearer picture of how the algorithm works, and how to get the
best performance from it.

The Lennard—Jones Solid

The position of the fluid—fcenelting
line has been calculated®, and by
evaluating ground-state energies one
can determine which is the preferred
structure along the T=0 K isotherm.
However, the behaviour between
these two extremes is still unclear.
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The lattice-switch technique has been extended to soft
potentials, and simulation work has begun, with the aim of
identifying the position of the fcc— hcpoexistence curve.

It should be possible to compare these results with experimental
findings for rare gas solids, and so clarify the crossover from
classical to quantum-mechanical behaviour.
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